Asset Management Plan DC Supply Systems ## **Executive Summary** This Asset Management Plan (AMP) covers the class of assets relating to Direct Current (DC) Supply Systems, including batteries and battery chargers, in substations and distribution assets. DC systems provide the direct current supply used by control and protection systems within substations such as the protection relays and circuit breaker solenoids and on distribution assets such as reclosers and sectionalisers. EQL manages more than 4,700 battery systems across Queensland, employing a number of different battery types, including VRLA (valve regulated lead acid), VRNC (valve regulated nickel cadmium) and wet lead acid types, as well as AC chargers designed to suit the battery installation. DC service failure can introduce the following significant risks: - Complete failure of DC supply leading to loss of protection, communications, and substation control. - Release of toxic chemicals. - Uncontrolled release of stored energy, usually as a fire or explosion. Key asset challenges for DC systems include the continuous improvement of asset data quality and the standardisation and improvement of procurement and maintenance processes across Energy Queensland Limited (EQL) to drive efficiency, deliver customer outcomes and mitigate risks. EQL will also continue to improve safety and the cost-effective management of this asset class. With technology constantly evolving, particularly in the area of battery storage, it is important for EQL to keep up with improved technological advances in order to continually improve the quality of asset management of DC systems across the state. ## **Revision History** | Revision date | Version
number | Description of change/revision | |---------------|-------------------|--------------------------------| | 31/01/2019 | 1 | Document Initial release | | 7/12/2023 | 2 | Updated revision | ## **Document Approvals** | Position title | Date | |-----------------------------------|-------------| | General Manager Asset Maintenance | Jan
2024 | | Chief Engineer | Jan
2024 | #### **Stakeholders / Endorsements** | Title | Role | |---|---------| | Manager Asset Strategy | Endorse | | Manager Secondary Plant and Auxiliary Systems | Endorse | # **Contents** | Ex | ecutive | e Summary | i | |----|---------|--|------| | 1 | Intro | duction | 1 | | | 1.1 | Purpose | 1 | | | 1.2 | Scope | 2 | | | 1.3 | Total Current Replacement Cost | 3 | | | 1.4 | Asset Function and Strategic Alignment | 3 | | | 1.5 | Owners and Stakeholders | 4 | | 2 | Asse | t Class Information | 5 | | | 2.1 | Asset Descriptions | 5 | | | 2.1.1 | Battery | 5 | | | 2.1.2 | Battery Charger | 6 | | | 2.1.3 | B DC distribution board | 6 | | | 2.2 | Asset quantity and physical distribution | 6 | | | 2.3 | Asset age distribution | 9 | | | 2.4 | Population trends | . 12 | | | 2.5 | Asset life limiting factors | . 12 | | | 2.5.1 | Batteries | . 13 | | | 2.5.2 | Battery Chargers | . 13 | | 3 | Curre | ent and Desired Levels of Service | . 13 | | | 3.1 | Desired levels of service | . 14 | | | 3.2 | Legislative requirements | . 14 | | | 3.3 | Performance requirements | . 15 | | | 3.4 | Current levels of service | . 17 | | 4 | Asse | t Related Corporate Risk | . 20 | | 5 | Healt | h, Safety & Environment | . 21 | | 6 | Curre | ent Issues | . 22 | | | 6.1 | AC ripple issues with Capacitor based battery chargers | . 22 | | | 6.2 | Design standardisation | . 22 | | | 6.3 | Standing load issue | . 22 | | | 6.4 | Battery system monitors | . 23 | | | 6.5 | Manual handling of batteries | . 23 | | | 6.6 | Lines based plant batteries | . 23 | | 7 | Eme | ging Issues | . 24 | | | 7.1 | Battery temperature compensation | . 24 | | | 7.2 | Battery charger nuisance tripping in Energex region | . 24 | | | 7.3 | Stores | procedures for batteries | 24 | |-----|-------|-------------|---|----| | | 7.4 | Comm | issioning and maintenance records | 25 | | | 7.5 | Previo | us poor battery spacing during installation | 25 | | 8 | Impro | ovemen | ts and Innovation | 26 | | | 8.1 | Battery | technology development | 26 | | | 8.2 | Use of | DC-DC converters | 26 | | 9 | Lifec | ycle Str | ategies | 26 | | | 9.1 | Philoso | ophy of approach | 26 | | | 9.2 | Suppo | rting data requirements | 26 | | | 9.3 | Acquis | ition and procurement | 27 | | | 9.4 | Operat | tion and maintenance | 28 | | | 9.4.1 | Pre | eventive maintenance | 28 | | | 9.4.2 | 2 Co | rrective maintenance | 28 | | | 9.4.3 | Sp: | ares2 | 28 | | | 9.5 | Refurb | ishment and replacement | 28 | | | 9.5.1 | Re | furbishment2 | 28 | | | 9.5.2 | ? Re | placement | 29 | | | 9.6 | Dispos | al | 29 | | 10 | Prog | ram Re | quirements and Delivery | 29 | | 11 | Sumi | mary of | Current Reviews in Progress | 30 | | App | endix | 1. F | References | 31 | | App | endix | 2. [| Definitions | 32 | | Apr | endix | 3. <i>A</i> | Acronyms and Abbreviations | 33 | # **Figures** | Figure 1: Energy Queensiand Document Hierarchy | ∠ | |---|----| | Figure 2: Total Current Replacement Cost | 3 | | Figure 3: Ergon Energy Region age profile of substation battery banks (where age is recorded) | 9 | | Figure 4: Ergon Energy Region substation battery charger age profile | 10 | | Figure 5: Energex Region substation battery bank age profile | 10 | | Figure 6: Energex Region substation battery charger age profile | 11 | | Figure 7: Energex Region substation battery system monitor (BSM) age profile | 11 | | Figure 8: Energex Region line (excluding LTS) battery bank age profile (as of Aug 2018) | 12 | | Figure 9: Substation battery charger corrective work orders – Ergon Energy Region | 17 | | Figure 10: Substation battery corrective work orders – Ergon Energy Region | 18 | | Figure 11: Energex Region substation battery corrective maintenance | 18 | | Figure 12: Energex region substation battery charger corrective maintenance | 19 | | Figure 13: SAP Fiori incident volumes by region - Substation DC systems | 19 | | Figure 14: Substation DC system threat barrier diagram | 20 | | Figure 15: Lines asset DC supply threat barrier diagram | 21 | | Tables | | | Table 1: Asset Function and Strategic Alignment | Δ | | Table 2: Stakeholders | | | Table 3: Ergon Energy Region substation battery bank population | | | Table 4: Ergon Energy Region substation battery charger population | | | Table 5: Ergon Energy Regions – lines recloser battery bank populations | | | Table 6: Energex region - substation battery bank populations | | | Table 7: Energex region - lines battery bank populations | | | Table 8: Battery life limiting factors | | | Table 9: Charger life limiting factors | | | <u> </u> | | #### 1 Introduction Energy Queensland Limited (EQL) was formed 1 July 2016 and holds Distribution Licences for the following regions: - Energex Limited - Ergon Energy Corporation Limited There are variations between EQL's operating regions in terms of asset base and management practice, as a result of geographic influences, market operation influences, and legacy organisation management practices. This Asset Management Plan (AMP) reflects the current practices and strategies for all assets managed by EQL, recognising the differences that have arisen due to legacy organisation management. These variations are expected to diminish over time with the integration of asset management practices. There are variations between EQL's operating regions in terms of asset base and management practice, as a result of geographic influences, market operation influences, and legacy organisation management practices. This Asset Management Plan (AMP) reflects the current practices and strategies for all assets managed by EQL, recognising the differences that have arisen due to legacy organisation management. These variations are expected to diminish over time with the integration of asset management practices. #### 1.1 Purpose The purpose of this Asset Management Plan is to demonstrate the responsible and sustainable management of batteries and chargers used with assets forming part of the EQL electrical network. The objectives of this plan are to: - Deliver customer outcomes to the required level of service. - Demonstrate alignment of asset management practices with EQL's Strategic Asset Management Plan and business objectives. - Demonstrate compliance with regulatory requirements. - Manage the risks associated with operating the assets over their lifespan. - Optimise the value Energy Queensland derives from this asset class. This Asset Management Plan will be updated periodically to ensure it remains current and relevant to the organisation and its strategic objectives. Full revision of the plan will be completed every five years as a minimum. This Asset Management Plan is guided by the following legislation, regulations, rules, and codes: - National Electricity Rules (NER) - Electricity Act 1994 (Qld) - Electrical Safety Act 2002 (Qld) - Electrical Safety Regulation 2013 (Qld) - Electrical Safety Code of Practice 2010 Works (ESCOP) - Work Health & Safety Act 2014 - Work Health & Safety Regulation 2011 - Ergon Energy Corporation Limited Distribution Authority No D01/99 - Energex Limited Distribution Authority No. D07/98. This Asset Management Plan forms part of Energy Queensland's strategic asset management documentation, as shown in Figure 1. It is part of a suite of Asset Management Plans which collectively describe Energy Queensland's approach to the lifecycle management of the various assets which make up the network used to deliver electricity to its customers. Appendix 1 contains references to other documents relevant to the management of the asset class covered in this plan. **Figure 1: Energy Queensland Document Hierarchy** ## 1.2 Scope This AMP covers the
following assets: - Substation batteries and battery chargers; and - Lines batteries and battery chargers (for reclosers and sectionalisers). Many customers, typically those with high voltage connections, own and manage their own network assets including DC Supply Systems and ancillary equipment. EQL does not provide condition and maintenance services for third party assets, except as an unregulated and independent service. This AMP relates to EQL owned assets only and excludes any consideration of such commercial services. #### 1.3 Total Current Replacement Cost DC Systems are relatively low capacity, low volume, and low-cost assets and are typically asset managed on a population basis using periodic inspection for condition and serviceability and through systemic review of recorded performance. Based upon asset quantities and replacement costs, EQL substation DC systems have a replacement value of the order of \$30 million. This valuation is the gross replacement cost of the assets, based on the cost of replacement of modern equivalents, without asset optimisation or age assigned depreciation. Figure 2 provides an indication of the relative financial value of EQL substation DC systems compared to other asset classes. Proactive management of this asset type is an essential part of achieving our corporate vision and strategic purpose. **Figure 2: Total Current Replacement Cost** #### 1.4 Asset Function and Strategic Alignment Protection, communications, and Supervisory Control and Data Acquisition (SCADA) systems all typically employ DC (direct current) power. DC power provides power supply stability for these assets, especially during times of power network instability. Power supply stability allows critical substation safety and control services to function reliably and consistently whenever required. Similarly, the protection and control functions on distribution devices such as sectionalisers and reclosers rely on DC supply from batteries. Protection systems act to de-energise electrical assets under fault conditions. This is necessary to support the electrical safety of EQL staff and public, so is an essential element in discharging EQL's regulatory safety for its staff, customers, and the public in relation to its assets. SCADA systems provide monitoring of distribution network system parameters and provide remote control to facilitate day to day safe operation of network assets. SCADA systems support efficient network operation and are an essential part of achieving the corporate reliability performance standards. Communication systems facilitate network operational communications, protection scheme communications and SCADA. DC supply systems allow protection, SCADA, and communications systems to function reliably during times of power system disturbance in the rare event of complete loss of AC (Alternating Current) supply to a site. Such events can occur as a result of outages, asset failure, emergency (fault) situations, disaster situations (such as cyclones and floods), and Black System (mass system loss) situations. Table 1 below details how DC supply systems contribute to the corporate strategic asset management objectives. | Relevant Asset Management Objectives | Relationship of Asset to Asset Management Objectives | |--|--| | Ensure network safety for staff, contractors, and the community | Diligent and consistent maintenance and operations of DC supply systems support ongoing network protection, communication, and SCADA functionality, ensuring safety for all stakeholders. | | Meet customer and stakeholder expectations | DC services facilitate ongoing SCADA and communication functions supporting effective operations of the distribution network. In turn, effective and efficient network operations and management directly supports network reliability and promotes delivery of a standard high quality electrical energy transport service. | | Manage risks, performance standards and asset investment to deliver balanced commercial outcomes | Failure of DC services can lead to loss of essential protection, communication, and remote control. Such loss can result in disruption of the electricity network and increased public safety risk. Proactive replacement and asset longevity assists in minimising capital and operational expenditure. | | Develop asset management capability and align practices to the global ISO55000 standard | This AMP is consistent with AS ISO55000 objectives and drives asset management capability by promoting continuous improvement. | | Modernise the network and facilitate access to innovative energy technologies | This AMP promotes replacement of assets at end of economic life as necessary to suit modern standards and requirements. | **Table 1: Asset Function and Strategic Alignment** #### 1.5 Owners and Stakeholders The key roles and responsibilities for the management of this asset class are outlined in Table 2. | Responsible Party | Role | |--|---| | Queensland Government | Development of legislative framework and environment for operation of EQL in Queensland. Development of EQL Distribution Authorities. | | Queensland Government as sole shareholder of EQL | Owner of company shares, holding equity in EQL and gaining benefits from EQL financial success. | | EQL Board of Directors | Corporate direction, operation, and performance of EQL and its subsidiaries, in compliance with corporate and Queensland law. | | Chief Financial officer | Company Asset Owner – ensuring all EQL investments are consistent with EQL corporate objectives with balanced commercial outcomes. | | Chief Operating Officer | Overall operational control of EQL networks including maintenance and operation, and execution of project works. | | Chief Engineer | Overall strategic control of EQL assets, including asset population performance, risk, and financial management. | | All employees and contractors of | Performing all duties as required to achieve EQL corporate | | Energy Queensland Limited | objectives. | | |---|--|--| | All unions that are party to the EQL Union Collective Agreement | Promotion of safe and fair working conditions for all EQL and subsidiary company employees. | | | Queensland Electrical Safety
Office | Regulatory overview and control of electrical safety in Queensland. | | | Australian Energy Regulator | Regulatory overview and control of economic performance of EQL under its Distribution Authorities to promote the long-term interests of all electrical network customers connected to the National Electricity Market. | | | Powerlink | Queensland Transmission Network Service Provider. Owner and operator of many 110kV to 330kV transmission grid assets and 74 bulk supply substations that connect and deliver energy to EQL networks | | | All consumers, prosumers and generators connecting to the Energy Queensland network | Operating within the electrical technical boundaries defined by legislation, regulation, and connection agreements. | | | All communities and businesses connected to the Energy Queensland network. | Economic prosperity of Queensland. | | **Table 2: Stakeholders** #### 2 Asset Class Information The following sections provide a summary of the key functions and attributes of the assets covered in this AMP. ## 2.1 Asset Descriptions DC systems provide the direct current supply used by control and protection systems within substations such as the protection relays and circuit breaker solenoids, and on distribution assets such as reclosers and Sectionalisers. The following sections provide a description of the various assets covered in this AMP. #### 2.1.1 Battery A battery is a device that produces electrons through electrochemical reactions and contains positive (+) and negative (-) terminals. A battery consists of one or more electrochemical cells, which transform stored chemical energy directly into electrical energy and vice versa. When an external load connects the positive and negative terminals, electrons cross from the negative to the positive terminal, creating an electrical current. Batteries are ganged together (in battery strings) to achieve the designed voltage and amperage capacity levels. For safe, long-term charging, all batteries in a battery string must be of the same type. EQL employs three types of batteries across the different substations and lines: Wet lead acid – the electrolyte is a water based acid which must be periodically maintained and checked for electrolyte level. - Valve regulated lead acid absorbed glass mat (VRLA) the electrolyte is absorbed in thin fibreglass mats sandwiched between lead plates and effectively immobilised. The batteries are effectively sealed but employ overpressure valves to release excess gas (hydrogen, oxygen) that might form in overcharging conditions. VRLA batteries are virtually maintenancefree and stored/used at any angle. Lead acid batteries have low self-discharge rates (i.e. low ongoing electrical losses). - Valve regulated nickel cadmium (VRNC) nickel cadmium (Ni-Cad) batteries employing a flooded cell design with nickel hydroxide and metallic cadmium
as electrodes and the electrolyte held in fibreglass mat separators. The batteries are effectively sealed but employ overpressure valves to release excess gas that might form in overcharging conditions. These batteries are virtually maintenance-free and stored/used at any angle. Nickel cadmium batteries have a high self-discharge rate (i.e. high ongoing losses). Care must be taken when disposing of nickel cadmium batteries due to the toxicity of cadmium. ## 2.1.2 Battery Charger A battery charger is a rectifier designed to deliver a stabilised and relatively harmonic-free DC supply from an AC supply source. Substation battery chargers are typically designed to deliver the entire standing load of the substation as well as the maximum charging load of the associated battery banks. The AC charger for a lead acid battery is essentially a constant voltage device. The AC charger for a Ni-Cad battery is essentially a constant current device. #### 2.1.3 DC distribution board A DC distribution board is typically an arrangement of DC buses, fuses, links, and circuit breakers that allow individual DC power circuits and systems to be segregated, separately protected and isolated, while maintaining DC supply services to the rest of the substation infrastructure. In many substations, battery chargers and battery banks are duplicated, with all circuit switching and configuration occurring via the DC distribution board. ## 2.2 Asset quantity and physical distribution Table 3 details the population of substation battery banks in Ergon Energy Region, by output voltage. Communication sites and remote community generation sites have been excluded from these numbers. The variations in voltage reflect the diverse range of different control systems, protection systems, communications systems and even circuit breaker types found in Ergon Energy Region substations. | Voltage | VRLA | VRNC | |---------|------|------| | 12V | 1 | 0 | | 24V | 39 | 1 | | 30-32V | 155 | 11 | | 48-50V | 13 | 0 | | 110V | 178 | 2 | | Total | 403 | 18 | |----------|-----|----| | Unknown | 0 | 0 | | 120-125V | 17 | 4 | Table 3: Ergon Energy Region substation battery bank population Table 4 details the population of substation battery chargers in Ergon Energy Region, by output voltage. | Voltage | Quantity | |---------|----------| | 12 | 2 | | 24 | 1 | | 30 - 32 | 35 | | 48 - 50 | 153 | | 110 | 12 | | 122-125 | 179 | | Unknown | 25 | | Total | 407 | Table 4: Ergon Energy Region substation battery charger population Of the 4,577 reclosers and sectionalisers recorded in the Ergon Energy Region, 1,390 units contain batteries. Table 5 provides a quantity breakdown by primary switched voltage. | Primary Voltage | Quantity | |-----------------|----------| | 11kV | 853 | | 22kV | 197 | | 33kV | 69 | | 12.7kV | 106 | | 19.1kV | 165 | | Total | 1,390 | Table 5: Ergon Energy Regions – lines recloser battery bank populations Table 6 details the population of substation battery banks (likewise for battery chargers) in the Energex Region, by output voltage. | Voltage | VRLA | VRNC | |---------|------|------| | 24V | 98 | 1 | | 30V | 80 | 50 | | 48V | 180 | 0 | | 110V | 386 | 0 | | Total | 744 | 51 | ## Table 6: Energex region - substation battery bank populations Table 7 details the population of lines asset type battery systems by primary asset type and voltage. | Component | 12V VRLA | 24V VRLA | |----------------------------|----------|----------| | Recloser | 459 | 366 | | Sectionaliser | 0 | 106 | | LTS (load transfer switch) | 0 | 1181 | | Total | 459 | 1653 | Table 7: Energex region - lines battery bank populations ## 2.3 Asset age distribution The DC system age profiles are detailed in the figures below. The expected lifetimes of batteries and chargers are impacted by many factors including the required functionality, obsolescence, design, and technology employed. As a rough guide, wet lead acid and VRLA batteries typically last between 5-8 years, VRNC batteries last around 21 years, and battery chargers last between 20-45 years. #### **Ergon Energy Region** Data detailing year of installation for substation batteries is sparse, with almost 70% of banks have an un-recorded age. Figure 3 details the age profile of battery banks in the Ergon Energy Region where the year of manufacture is recorded; however, there is insufficient information available to determine the expected life period for these assets. Considering the replacement cycle for substation batteries is 7 yearly, very rarely do the battery banks exceed this age. Figure 3: Ergon Energy Region age profile of substation battery banks (where age is recorded) Data detailing year of installation or manufacturer data for substation battery chargers in the Ergon Energy Region is also missing around 25% of the population. These missing values have been estimated using photos and project information within the business to provide a year of manufacturer. Figure 4 demonstrates the age profile for substation battery chargers. Figure 4: Ergon Energy Region substation battery charger age profile #### **Energex Region** The age profiles for VRLA and Ni-Cad battery banks in the Energex Region are shown in Figure 5. Although there are several VRLA battery banks that are past the replacement age of six years, this is due to previously inaccurate data. After a recent audit where the data was clarified, these banks have now been programmed for proactive replacement. Note that individual cell replacements would have occurred throughout the bank life. Figure 5: Energex Region substation battery bank age profile The battery charger age profile in the Energex Region is illustrated in Figure 6. A proactive replacement strategy for battery chargers was recently instigated in the Energex Region. The expected lifetime of battery chargers varies depending on the technology, manufacturer, and environment. Figure 6: Energex Region substation battery charger age profile The age profile of substation battery system monitors (BSM's) shown in Figure 7 is similar in trend to the battery charger age profile in Figure 6 above. Figure 7: Energex Region substation battery system monitor (BSM) age profile Figure 8 below shows the age profile of recloser and sectionaliser battery banks using the best available data, but the data for LTS's (line transfer switches) is not available to be shown (lines asset battery systems in the Energex Region have not required significant focus of attention to date). All line battery banks are VRLA type and are proactively replaced on a 5 year replacement cycle. Whilst there appears to be multiple banks that are outside of the 5 year band, it should be noted that data inaccuracies are present. It has been confirmed that they are currently programmed for replacement in the future. Figure 8: Energex Region line (excluding LTS) battery bank age profile (as of Aug 2018) ## 2.4 Population trends The number of battery and charger systems is expected to remain relatively constant over time. EQL intends to standardise upon battery and charger suppliers, so there will be a gradual reduction in the number of different brand types as each individual asset has a different end of economic life (as there will always be some variation in brands as items go out on period contract, and suppliers may change). The same variation in asset life applies for battery system capacity (i.e. Amp-hour rating), as over time a large number of different capacity systems have been used. Ideally, these are to be standardised, but battery charger capacity and space constraints are issues that will slow the standardisation process. Nickel cadmium batteries are progressively being phased out by legislation in various countries around the world due to the toxicity of cadmium when disposed in landfill. There is currently no such legislation in place in Queensland. EQL utilises lead acid (VRLA) batteries for all new installations and nickel cadmium battery banks are only installed as like-for-like replacements. Where both chargers and batteries must be replaced together, VRLA batteries and appropriate chargers' assets are used. Potential also exists for some reduction in the number of battery and charger systems in each substation where DC-DC converter reliability can be demonstrated, and the risks associated with such failure can be correctly managed. ## 2.5 Asset life limiting factors The following sections outline the life limiting factors of different asset types covered in this AMP. #### 2.5.1 Batteries Table 8 describes the key factors that influence the life of batteries and as a result have a significant bearing on the programs of work implemented to manage the asset lifecycle. | Factor | Influence | Impact | |--|---|---| | Average battery temperature over time | Efficacy of the chemical reaction process. | Reduction in overall electron storage capability. | | Operating environment | Dust, chemicals. | Corrosion, localised overheating. | | Number of deep discharge cycles | Efficacy of the chemical reaction process. | Reduction in electron storage and discharge capability (no discharge cycles can be harmful and too many is also harmful). | | Level of discharge | Ability to recharge to the intended capacity. | Reduction in overall bank ability to supply load demand. | | Recharging rate | Ability to absorb additional electrons is impacted by the battery charge level. | Charge rate must be managed to maximise battery longevity. | | Overcharging | Excess charging results in gas production out of the electrolyte and overpressure gas release by the regulating valves. | Loss of electrolyte, reducing battery capacity. Overheating leading to catastrophic failure | |
Extended float charging (Nickel cadmium batteries) | So-called memory effect (there is scientific debate about the cause). | Reduction in the ongoing ability to discharge to the level required. | **Table 8: Battery life limiting factors** #### 2.5.2 Battery Chargers Table 9 describes the key factors that influence the life of battery chargers and as a result, have a significant bearing on the programs of work implemented to manage the asset lifecycle. | Factor | Influence | Impact | |--|---------------------------------------|--| | Operating temperature | | Reduction of maximum output of device, increased output of AC ripple | | Operating environment | Dust, chemicals | Corrosion, localised overheating | | Input harmonics and noise | Surge absorption capability | Overheating | | Failure of microprocessor management units | Aging of electronics, dust, chemicals | Charger failure | **Table 9: Charger life limiting factors** #### 3 Current and Desired Levels of Service The following sections define the level of performance required from the asset class, measures used to determine the effectiveness of delivering corporate objectives, and any known or likely future changes in requirements. #### 3.1 Desired levels of service This DC supply system asset class will be managed, consistent with corporate asset management policy, to achieve all legislated obligations and any specifically defined corporate key performance indicators and to support all associated key result areas as reported in the Statement of Corporate Intent (SCI). Safety risks associated with DC systems will be eliminated so far as is reasonably practicable (SFAIRP), and if not able to be eliminated, mitigated SFAIRP. All other risks associated with this asset class will be managed as low as reasonably practicable (ALARP). The main components of this asset class each consist of a similar population differing in age, brand, technology, material, construction design, technical performance, purchase price and maintenance requirements. Each population will be managed consistently, based upon generic performance outcomes, with an implicit aim to achieve the intended and optimised life cycle costs contemplated for the asset class and application. All inspection and maintenance activities will be consistent with manufacturers' advice, good engineering operating practice, and historical performance, with intent to achieve the longest practical asset life overall. Life extension techniques will be applied where practical and will be consistent with overall legislative, risk, reliability, and financial expectations. Problematic assets such as very high maintenance or high safety risk assets in the population will be considered for early retirement. DC systems provide an essential service to critical substation components including protection, communication, and SCADA. DC systems hardware is designed to be fault tolerant and deliver a stabilised DC supply to those critical components whenever substation primary plant is energised. DC supply assets are expected to supply a substation for up to 10 hours after the loss of AC supply. A loss of this duration typically only occurs after, for example, widespread natural disaster situations, and is mitigated by use of portable generators. Lines asset batteries are specified to allow successful operation of the primary switch up to 36 hours after loss of AC supply. Loss of supply for such durations is very rare. The steady state operating load on these devices is very small, so typically a single battery is adequate for this purpose. ## 3.2 Legislative requirements Regulatory performance outcomes for this asset include compliance with all legislative and regulatory standards, including the *Electrical Safety Act 2002 (Qld)*, the *Electrical Safety Regulation 2013 (Qld)*, and the Queensland Electrical Safety Codes of Practice. The *Electrical Safety Act 2002 (Qld)* Section 29 imposes a specific duty of care for EQL, which is a prescribed Electrical Entity under that Act: - 1) An electricity entity has a duty to ensure that it works - a. are electrically safe; and - b. are operated in a way that is electrically safe. - 2) Without limiting subsection (1), the duty includes the requirement that the electricity entity inspect, test, and maintain the works. EQL is responsible for defining the extent of inspection, testing and maintenance, including standards and interval timing, considering overall safety and performance obligations. EQL has an obligation to provide adequate protection of its power system assets¹, maintain transmission, sub transmission and distribution voltages within statutory limits, and provide the customer with acceptable quality and reliability of supply including voltage levels². Substation protection, Intelligent Electronic Devices (IEDs), On-Load Tap Changer (OLTC) control circuitry, Automatic Voltage Regulators (AVRs), and most Circuit Breakers (CBs) require a DC power supply. The *National Electricity Rules* (NER) stipulate minimum fault clearing times for transmission and subtransmission lines³, which typically require communications assisted protection schemes. Without high-speed communications, protection-clearing times will not meet the *National Electricity Rules* requirements and may adversely affect power system stability. Loss of DC supply can render many protection systems at a substation inoperative. Without adequate protection, step and touch potentials during power system faults are unlikely to meet the requirements of the Electrical Safety Code of Practice⁴ and the regulations⁵. Lack of adequate protection may expose EQL to increased risk of extensive plant damage under fault, with consequential asset replacement and remediation costs. In addition, uncontrolled system fault events can affect the external environment, with impacts such as air pollution, oil spillage and bush fire initiation, which compromises EQL's ability to achieve its environmental duty and associated obligations⁶. Loss of DC supply can render SCADA and Communications systems inoperative at the substation (some substations have a dedicated and independent DC supply to mitigate this risk). Such a loss will have an adverse effect on EQL's ability to operate and control its network assets, and hence meet the minimum service standards (MSS) defined in EQL's Distribution Authorities and the Service Target Performance Incentive Scheme (STPIS) performance targets defined under the NER. Dangerous electrical events (DEEs) are defined in legislation⁷. DEEs are typically circumstances involving a high voltage asset, where a person would not have been electrically safe had they been exposed to the event. EQL assigns DEEs into two categories as follows: - Unassisted DEEs incidents that might have been prevented via a utopian maintenance program; and - Assisted DEEs incidents where the root cause of failure occurs outside the control of any maintenance program (e.g. lightning strike). EQL includes complete loss of HV protection at a substation as a DEE because of the electrical safety implications. #### 3.3 Performance requirements Corporate performance outcomes for this asset are rolled up into Asset Safety & Performance group objectives, principally the following key result areas (KRA): Customer Index, relating to Customer satisfaction with respect to delivery of expected services. 15 ¹ EQL has a duty to ensure that its works are electrically safe, refer Electrical Safety Act 2002 (Qld) s29. ² Refer to Electrical safety Regulation 2006 (Qld) s11. ³ NER, Chapter 5, Schedule 5.1 ⁴ Electrical safety Code of Practice 2010 (Qld), s3.5. Note these definitions are not mandatory but may be used as a reference standard in the Courts. ⁵ Refer to Electrical safety Regulation 2006 (Qld) s196. ⁶ Detailed in the Environmental Protection Act 1994 (Qld) and associated regulations. ⁷ Electrical Safety Act 2002 (Qld), s12 Optimise investments to deliver affordable & sustainable asset solutions for our customers and communities. Corporate Policies relating to establishing the desired level of service are detailed in 0. Under the Distribution Authorities, EQL is expected to operate with an 'economic' customer value-based approach to reliability, with "Safety Net measures" for extreme circumstances. Safety Net measures are intended to mitigate against the risk of low probability versus high consequence network outages. Safety Net targets are described in terms of the number of times a benchmark volume of energy is undelivered for more than a specific time period. Complete DC supply system failure can be a reason for complete substation outage and may impact Safety Net compliance. EQL is expected to employ all reasonable measures to ensure it does not exceed minimum service standards (MSS) for reliability, assessed by feeder types as - System Average Interruption Duration Index (SAIDI) - System Average Interruption Frequency Index (SAIFI). Complete DC supply system failure can be a reason for complete substation outage and may impact SAIDI/SAIFI performance. DC supply system element failures typically have negligible impact upon SAIDI and SAIFI. Both Safety Net and MSS performance information are publicly reported annually in the Distribution Annual Planning Reports (DAPR). MSS performance is monitored and reported within EQL daily. DEEs are generally reviewed for severity on an individual basis, with response and investigation driven by severity of incident. DEE volumes are reported monthly. Climatic and seasonal variation influences Ergon Energy Region DEE volumes substantially – accounting for over 20% variation year on year. Because of this influence, there is no overall specific maximum target benchmark for annual DEE numbers other than the intent to minimise the quantities. #### 3.4 Current levels of service #### **Ergon Energy Region**
Figure 9 below, provides a recent history of the number and costs of corrective work orders related to substation battery chargers in Ergon Energy Region. There was a step change in 2020 to the routine maintenance of the battery chargers, and this shows with an increase in corrective work to address defects found in these inspections and maintenance. There is also a significant drop post the first round of the updated maintenance which suggests a lot of the initial defects were rectified. This also translates to the corrective maintenance costs for these corresponding years. The work priority levels represent the urgency of the defects and time for rectification work to be completed by: P0 requires immediate attention, P1 is 1 month, P2 is 9 months and P3 and P5 are for defects that are not urgent but require rectification. Figure 9: Substation battery charger corrective work orders - Ergon Energy Region Figure 10 below provides a recent history of the number and costs of corrective work orders related to substation batteries in Ergon Energy Region. There was a step change in 20/21 to the routine maintenance of the battery chargers, the defects have subsequently reduced over time as they have been addressed. This also translates to the corrective maintenance costs for these corresponding years increasing. Figure 10: Substation battery corrective work orders – Ergon Energy Region #### **Energex Region** Figure 11 below shows the battery corrective and defect maintenance work orders. There was a step change in 20/21 to the routine maintenance of the DC systems hence the increase in work as defects and issues were found and rectified. The corrective work has subsequently reduced over time as issues and defects were rectified. Figure 11: Energex Region substation battery corrective maintenance The corrective data for batter changers only is shown in Figure 12 below shows the battery charger corrective and defect maintenance work orders. There was a step change in 20/21 to the routine maintenance of the DC systems hence the subsequent reduction of corrective work required as issues are addressed. Figure 12: Energex region substation battery charger corrective maintenance DC supply system failures are recorded in EQL's eSafe and SAP systems and classified as DEEs. While based upon the same basic software, Ergon Energy and Energex used their eSafe records systems slightly differently, attributing to differences in data records. #### **SAP Fiori Incidents** Figure 13 shows that the number of recorded SAP incidents related to substation battery failure is very low. Figure 13: SAP Fiori incident volumes by region - Substation DC systems ## 4 Asset Related Corporate Risk As detailed in Section 3.2, Queensland legislation details that EQL has a duty to ensure its works are electrically safe. This safety duty requires that EQL act so far as is reasonably practicable (SFAIRP) to eliminate safety related risks, and where it is not possible to eliminate these risks, to mitigate them SFAIRP⁸. Failure of a DC system risks public and staff safety, most notably by potential loss of protection, communications, and substation control. Figure 14 below provides a threat-barrier diagram for EQL substation DC system assets. Figure 15 provides a threat barrier diagram for lines asset dc supplies. Many threats are unable to be controlled (e.g. third-party damage), although EQL undertakes a number of actions to mitigate them SFAIRP. EQL's safety duty results in most inspection, maintenance, refurbishment, and replacement works and expenditure related to DC systems being entirely focused upon preventing and mitigating battery and battery charger failure. The asset performance standards described in Section 3.3 detail EQLs achievements to date in respect of this safety duty. The following sections detail the ongoing asset management journey necessary to continue to achieve this performance in the future. Figure 14: Substation DC system threat barrier diagram - ⁸ Queensland Electrical Safety Act 2002 s10 and s29 Figure 15: Lines asset DC supply threat barrier diagram ## 5 Health, Safety & Environment Cadmium (Cd) is an extremely toxic industrial and environmental pollutant classified as a human carcinogen (Group 1 – according to International Agency for Research on Cancer; Group 2a – according to Environmental Protection Agency (EPA, USA) and 1B carcinogen classified by European Chemical Agency). There is no safe level of cadmium exposure. Dependent upon concentration, it can cause lung, liver, and kidney disease and failure, and various bone diseases including gout, decalcification, and softening. It is considered a neurotoxin. The body cannot easily excrete Cadmium. Cadmium is a regulated trackable waste product. Lead (Pb) is a toxic industrial and environmental pollutant. It is classified as a probable human carcinogen (group 2A). Dependent upon concentration, it causes headaches, stomach pains, anaemia, kidney damage, nerve and brain damage, and infertility. Lead is eventually excreted by the body. Lead is a regulated trackable waste product. EQL batteries are mostly sealed (valve regulated) batteries requiring no maintenance or direct handling of electrolytes, lead, or cadmium electrodes. The few remaining wet lead acid battery banks are being progressively phased out at end of life. #### 6 Current Issues The following sections outline current issues that have been identified as having the potential to impact EQL's ability to meet corporate objectives. #### 6.1 AC ripple issues with Capacitor based battery chargers Valve regulated lead acid (VRLA) batteries are used in many substations in the Energex Region. The associated capacitor-based rectifier type battery chargers employ a filter or smoothing capacitors on the output circuit to store power during the peaks. A common failure mode for a particular charger like the Chloride units is due to the drying out of the filter capacitors. When this occurs, there is an increase in AC ripple superimposed on the DC output of the battery charger, which degrades the battery's ability to sustain reversible electrochemical reactions, prematurely "aging" the battery. The at-risk Chloride and capacitor-based chargers are an older technology design and do not include a staging charge function (event type). This lack further degrades the battery ability to sustain repeatable electrochemical reactions and also acts to prematurely age the battery. There is an active works program in place to replace all Chloride battery chargers, and similar capacitor type chargers employing similar design, across the Energex Region. Similar problems have been evident in the Ergon Energy Region. Routine maintenance and inspection criteria now include proactive tests for AC ripple across all EQL substation battery chargers. ## **6.2 Design standardisation** Many substations contain DC supply systems that were designed prior to the development of current design standards, and for various design, reasons do not meet the current design standards. Non-compliance with current standards is not necessarily a driver for replacement as the associated change in risk achieving compliance is minimal. In those circumstances, condition and age based like-for-like replacement of DC system components will continue to be the most cost-effective solution. ## 6.3 Standing load issue A recent audit identified that there are some substations in the Energex Region where the total substation steady-state DC load is approaching the rated capacity of the charger. This risks charger overload and failure during times of high DC current draw, such as deep cycle battery recharge events. Failure to recharge within an appropriate time has a deleterious effect on the battery life due to build-up of lead sulphate on the cell plates and adversely risks the business's ability to respond to events that repeat over multiple days. It is likely that high standing loads are due to incremental substation upgrades involving additional DC loading occurring within the substation over time. Where the steady state load current is greater than 70% of the rated charger output, the charger has been programmed for replacement. ## **6.4 Battery system monitors** A Battery System Monitor (BSM) is a standalone unit capable of monitoring a complete 24 V, 30 V, 48 V or 110 V battery installation, and is employed to alert upon battery failure and other issues that require immediate attention. In the Energex Region, many BSMs contain outdated firmware and are incapable of detecting all of the failure modes and problems of the modern batteries installed. These units have become more difficult to replace with the manufacturer no longer supporting them. For instance, a Mini CSU-2 BSM was employed for 110V DC 160Ah and 300Ah battery banks. They are an obsolete design but many remain in service throughout the network. When the Mini CSU-2 units fail, they are temporarily repaired with other spare parts sourced from existing removed units. EQL has scheduled a review of the use of BSM's across all regions which will impact future design and procurement strategies. When the DC system is due for replacement the new contract battery chargers have full monitoring and testing facilities inbuilt which causes the BSM to become obsolete and used as a spare for other in-service units. #### 6.5 Manual handling of batteries EQL has recently recorded several manual handling incidents related to substation batteries. Battery "monoblocs" are heavy, due to the metals employed, typically weighing around 30kg. The relatively short life (up to 7 years) and numbers employed across EQL means that there is a regular pattern of battery transport and handling, presenting injury risk to maintenance staff. EQL has initiated a review of battery handling practices and battery mounting systems in substations to reduce the risks associated with manual handling. ## 6.6 Lines based plant batteries Assets such as
reclosers and Sectionalisers are often located on poles in various parts of the distribution network. These distributed devices employ self-contained control units to support the protection, control, and communication functions associated with the asset. Batteries are an integral part of each control unit to support operation and function during dynamic system operation and supply outages. Battery failure typically manifests as complete loss of functionality of the primary device. Upstream backup protection schemes are typically in place to assure network protection functions remain available; however, backup scheme operation significantly extends outage size and duration. Because of their harsh operating environment in Ergon Energy Region (compared to the typical substation environment), batteries tend to deteriorate quickly and typically fail between three and five years dependent upon daily temperature variations and extremes. In order to achieve the requisite reliability performance standards, lines asset batteries are replaced proactively every three years. In contrast, recloser and sectionaliser batteries in Energex Region (a relatively temperate environment) are tested every 2.5 years (in line with primary plant maintenance cycle) and compared to set criteria in MAC (for impedance and voltage) either replace or leave till next test. Also, batteries are replaced if older than 3 years. ## 7 Emerging Issues The following sections outline emerging issues which have been identified as having the potential to impact on EQL's ability to meet corporate objectives in the future. #### 7.1 Battery temperature compensation In the Energex Region, there is a proportion of battery chargers where the float voltage is a standard value and applied irrespective of the ambient temperature as the charger's temperature compensation probe is not properly installed or utilised. This means that the battery manufacturers' recommendations for float voltage levels with respect to temperature are not correctly applied. In consequence, some battery banks are being over-charged in hotter temperatures which reduces overall battery life. EQL is reviewing practices for battery charger installation and commissioning, considering best practices for achieving the intended design. This may include adjusting float voltages regarding whether temperature probe is operational or not or reinstating the temperature probe and resetting charger settings. ## 7.2 Battery charger nuisance tripping in Energex region In recent years, the Energex Region has experienced a large number of substation battery charger disruptions due to tripping of the main incoming AC circuit breaker. The initiating condition is usually a power system fault on the network at any voltage from 275kV down to 11kV. When these faults occur, there is a voltage dip on the network and hence on the 230V system inside the substation. Field crews must attend each impacted substation, and often just reset the AC circuit breaker to restart the battery charger again. Some of the sites have had the incoming AC circuit breaker changed from a 20A D-curve to a 25A D-curve, following the results of the previous investigation into the issue back in 2011. However, the issue remains unresolved. EQL is investigating nuisance tripping of battery charger circuit breakers in the Energex Region. Trial potential solutions to ascertain a more permanent solution. #### 7.3 Stores procedures for batteries EQL Stores holds a number of batteries at various locations around the state. There must be sufficient batteries available to support the restoration of any failed battery system at any time, due to the risk of widespread and prolonged customer supply failure should DC system failure occur. A minimum warehouse stock level of this asset is maintained based on historic usage and known future requirements. Disconnected batteries (as typically occur in storage) self-discharge. VRLA batteries discharge typically around 1-2% per month in storage, whereas VRNC batteries discharge typically around 5-8% per month in storage. Batteries that are completely discharged are rarely able to be restored as the battery components fail irretrievably. All stores' systems employ a first in-first out system, but there can still be long periods of storage which impacts eventual in-service life. A recent survey of batteries at the Energex Eagle Farm Distribution Centre found some batteries that were 18 months old that have not entered service. These may not be fit for service, or at the least, no longer have their name-plate capacity (i.e. 300Ahr). Installation of aged battery strings may be contributing to poor performance rates and the overall maintenance costs, as described in 3.4. In some situations, these batteries may be placed into service with no consideration for their state of charge and whether a refreshing charge is required. In addition, pallets of batteries in some storage areas do not appear to be appropriately signed and secured, with suitable allowances for staff Workplace Health and Safety (WH&S). EQL is reviewing battery procurement and storage processes, including procurement volumes and rates, maintenance in storage practices, and the possibility of just-in-time delivery from suppliers, in order to subsequently establish a standard management strategy for EQL. ## 7.4 Commissioning and maintenance records Charger and battery commissioning information requirements differ across EQL regions. In the Energex Region, there are often no commissioning records available for the battery and charger system as a whole. Currently, commissioning records practices differ according to if the installation is new or if it is a programmed replacement, but this needs to be reviewed. While battery technology has advanced substantially over recent years, asset information and records, including commissioning and maintenance information requirements have not kept pace with this development. EQL is reviewing battery and charger commissioning and replacement procedures, with specific emphasis upon information records. ## 7.5 Previous poor battery spacing during installation In the Energex Region, the manufacturers' installation instructions for spacing of batteries have not always been followed in the past. Mutual heating from touching batteries, particularly in an already hot environment, can shorten battery life. EQL is reviewing the inadequate spacing of batteries in the Energex Region and where appropriate initiate design changes to better achieve intended battery life. Positioning of battery mounting installations is also preventing routine inspection of testing terminals by probe at some locations. ## 8 Improvements and Innovation The following sections outline any improvements or innovations to asset management strategies relevant to this asset class, being investigated by EQL. #### 8.1 Battery technology development There is significant research and development in battery technology, driven by the growth in renewable energy generation and a need for stabilised delivery output regardless of variability of input energy source. Common battery types now include nickel-metal hydride, lithium ion, lithium polymer, lithium cobalt, lithium manganese, and magnesium ion. Battery technology and other means of electrical storage (e.g. super-capacitors) continue to be the focus of many research organisations. As research developments move to market, they need to be assessed for the benefits they might bring to the EQL's DC supply systems. Available commercial battery types are periodically reviewed to determine the benefits of changing current standards. Currently, valve regulated gel lead acid batteries (VRLA) are the battery of choice due to environmental and safety risks. #### 8.2 Use of DC-DC converters In some situations, particularly where large battery banks are already necessary for the substation and capacity is available, use of DC-DC converters offers potential to reduce overall DC system complexity and provide a cost-effective and reliable DC supply without additional battery systems. Several such systems are already installed, and performance is being monitored to confirm long term adequacy. ## 9 Lifecycle Strategies The following sections outline the planned approach of EQL to the lifecycle asset management of this asset class. ## 9.1 Philosophy of approach The consequences associated with complete DC supply failures have the potential to turn into significant safety events. Therefore, DC supply systems are required to be highly reliable and fault tolerant, incorporating designs with several potential layers of redundancy. To support this approach, all battery banks are assessed regularly and replaced proactively. Many are also monitored by SCADA. ## 9.2 Supporting data requirements Historically, it was not considered cost-effective to record detailed attribute data for the various batteries and chargers used across the network. The advancement in technology, asset management discipline, and corporate external reporting imperatives have together acted to change this approach. EQL recognises the need to improve the data quality associated with this asset class and has initiated improvements in the capture of information at time of commissioning as well as where prudent in association with other works. Further improvements will be undertaken with the implementation of the new Enterprise Asset Management System which is currently proposed. This will include an alignment of asset hierarchy. The following is a summary of key data requirements to manage the asset lifecycle of DC Supply Systems. #### Battery information required: - Unique operational identifier. - Battery bank installation date. - Brand and type. - Bank voltage and Ahr capacity. - Individual numbers of batteries employed to achieve the required voltage and capacity. - Periodic and ad hoc inspection data. - Battery maintenance history including cell voltage
before and after load testing. - Monobloc manufacture date. - Battery and monobloc install dates (including when replaced out of synch with the battery bank replacement). - Monitoring alarm data. - Cell/monobloc failure history data. #### Battery charger information required: - Unique operational identifier. - Battery charger manufacture date. - Battery charger installation date. - Brand and type. - Charger voltage and VA output capacity. - Periodic and ad hoc inspection data. - Charger maintenance history. - Charger settings history. - Monitoring alarm data. - Failure history data. EQL is implementing asset data structure changes in the new Enterprise Asset Management system being proposed for EQL to enable the consistent and accurate capture of data for DC Supply Systems. This will improve failure and condition monitoring capability to support the asset management objectives. ## 9.3 Acquisition and procurement Batteries and chargers are subject to typical corporate procurement arrangements, employing standard purchase specifications, and period contracts – typically three years with one or two annual extension options. All procurement is consistent with Queensland Government purchasing guidelines. #### 9.4 Operation and maintenance Operation and maintenance include planned and corrective maintenance. Operation and maintenance procedures are supported by a suite of documentation which describes in detail the levels of maintenance applicable, the activities to be undertaken, the frequency of each activity, and the defect and assessment criteria to which the condition and testing are compared to determine required actions. #### 9.4.1 Preventive maintenance All substations are inspected six monthly as part of routine hazard inspections. Battery banks are inspected as part of this task with specific in-service condition assessments. Battery diagnostic testing is conducted every 12 months, which includes a basic loading test of the battery banks and individual cell impedance and voltage measurements. Impedance and voltage tests typically reveal individual battery cells that are unable to store energy as intended. Individual battery monoblocs (a series of battery cells connected in series as a single purchased unit) are replaced if they do not perform as intended. The load test is to ensure that the battery bank is capable of sustaining the standing load for a short test period. Reclosers and Sectionalisers batteries are inspected as part of regular in-service pole condition assessments. Sectionalisers across EQL are assessed at intervals varying between 30 and 96 months (depending on the region, Sectionaliser type and pole material). Assessment intervals for reclosers vary from 12 to 36 months (depending on the region and if the recloser is remotely monitored). #### 9.4.2 Corrective maintenance Corrective maintenance occurs following detection of battery bank or battery cell or charger that displays a defect/alarm/poor maintenance test result. Depending on age, condition and test result, the assets can be repaired or replaced as required. #### **9.4.3 Spares** EQL replaces failed units in this asset class with current standard stock items. A minimum warehouse stock level of these classes is maintained based on historic usage and known future requirements. #### 9.5 Refurbishment and replacement The following sections outline the practices used to either extend the life of the asset through refurbishment or to replace the asset at the end of its serviceable life. #### 9.5.1 Refurbishment There is little refurbishment associated with batteries and chargers. Both are relatively maintenancefree assets. However, the findings of the AC ripple investigation described in section 6.1 may have an impact on this. #### 9.5.2 Replacement #### **Battery banks** - In the Ergon Energy Region, there is a 7 year replacement cycle for VRLA battery banks, except for reclosers, sectionalisers and other pole mounted units, which have a 3 year cycle. - In the Energex Region, VRLA battery banks in substations are replaced every 6 years, and lines battery banks (for reclosers or sectionalisers) are replaced based upon maintenance test results or if batteries are older than 3 years at time of inspection. - Nickel-Cadmium battery banks are replaced every 20 years across EQL. - Battery replacement is triggered as a routine maintenance task. - Battery monitor systems are not proactively replaced unless major works are planned in a substation that has an older battery monitoring unit. #### **Battery chargers** - In the Ergon Energy Region, battery chargers are operated as run-to-failure, and not proactively replaced. - In the Energex Region, battery chargers are operated as run-to-failure, and not proactively replaced. - There is an active effort to replace battery chargers when they are nearing end of life and are of the capacitor-based charging type. - Battery chargers must be reprogrammed or replaced if the associated battery bank battery type is changed. #### 9.6 Disposal Batteries and chargers contain toxic materials and must be recycled. EQL has appropriate procedures for safe removal of this asset from service. EQL recycles all electronics equipment and batteries through registered and certified waste disposal companies. Refer Appendix 1 for the relevant documents. ## **10 Program Requirements and Delivery** The programs of maintenance, refurbishment and replacement required to outwork the strategies of this AMP are documented in Network Program Documents and reflected in corporate management systems. Programs are typically coordinated to address the requirements of multiple asset classes at a higher level such as a substation site or feeder to provide delivery efficiency and reduce travel costs and overheads. The Network Program Documents provide a description of works included in the respective programs as well as the forecast units. Program budgets are approved in accordance with Corporate Financial Policy. The physical and financial performance of programs is monitored and reported on a monthly basis to manage variations in delivery and resulting network risk. ## 11 Summary of Current Reviews in Progress The following provides a summary of the specific reviews currently in progress noted throughout this AMP for ease of reference. **Section 7.1:** Review practices for battery charger installation and commissioning, considering best practices for achieving the intended design. This may include adjusting float voltages regarding whether temperature probe is operational or not or reinstating the temperature probe and resetting charger settings. **Section 7.2:** Investigate nuisance tripping of battery charger circuit breakers in the Energex Region. Trial potential solutions to ascertain a more permanent solution. **Section 7.3:** Review battery procurement and storage processes, including procurement volumes and rates, maintenance in storage practices, and the possibility of just-in-time delivery from suppliers, in order to subsequently establish a standard management strategy for EQL. **Section 7.4**:: Review battery and charger commissioning and replacement procedures, with specific emphasis upon information records. **Section 7.5:** Review the inadequate spacing of batteries in the Energex Region and where appropriate initiate design changes to better achieve intended battery life. Positioning of battery mounting installations is also preventing routine inspection of testing terminals by probe at some locations. **Section 9.2:** Implement asset data structure changes in the new Enterprise Asset Management system being proposed for EQL to enable the consistent and accurate capture of data for DC Supply Systems. This will improve failure and condition monitoring capability to support the asset management objectives. ## **Appendix 1. References** It takes several years to integrate all standards and documents after a merger between two large corporations. This table details all documents authorised/approved for use in either legacy organisation, and therefore authorised/approved for use by EQL, that supports this Asset Management Plan. | Legacy
Organisation | Document
Number | Title | Туре | |-------------------------|--------------------|---|--------------------------| | Ergon Energy
Energex | 3055921 | Standard for Battery Systems | Standard | | Ergon Energy
Energex | 3062917 | Standard for DC Supplies | Standard | | Ergon Energy
Energex | 2948464 | Standard for Network Assets
Defect/Condition Prioritisation | Standard | | Ergon Energy
Energex | 2928929 | Maintenance Acceptance Criteria | Manual | | Ergon Energy
Energex | 2945521 | Standard for Managing Substation
Asset Defects and Failures | Standard | | Ergon Energy
Energex | 2945509 | Standard for Managing Line Asset Defects and Failures | Standard | | Ergon Energy | SGNW0004 | Network Optimisation Asset Strategy | Strategy | | Ergon Energy | SGNW0038 | Poles and Towers Inspection Strategy | Strategy | | Ergon Energy
Energex | 2877290 | Network Risk Framework | Standard | | Energex | 354 | Overhead Network Condition Assessment Manual | Manual | | Energex | WP1199 | Battery Systems in Substations | Work Practice | | Energex | TSD0079d | Technical Instruction: Substation Battery
Chargers and Batteries | Technical
Instruction | # **Appendix 2. Definitions** | Term | Definition | |------------------------------------|--| | Condition Based Risk
Management | A formal methodology used to define
current condition of assets in terms of health indices and to model future condition of assets, network performance, and risk based on different maintenance, asset refurbishment, or asset replacement strategies. | | Corrective maintenance | This type of maintenance involves planned repair, replacement, or restoration work that is carried out to repair an identified asset defect or failure occurrence, in order to bring the network to at least its minimum acceptable and safe operating condition. An annual estimate is provided for the PoW against the appropriate category and resource type. | | Current transformer | Current transformers are used to provide/transform currents suitable for metering and protection circuits where current measurement is required. | | Distribution | LV and up to 22kV (and some 33kV) networks, all SWER networks. | | Forced maintenance | This type of maintenance involves urgent, unplanned repair, replacement, or restoration work that is carried out as quickly as possible after the occurrence of an unexpected event or failure; to bring the network to at least its minimum acceptable and safe operating condition. Although unplanned, an annual estimate is provided for the PoW against the appropriate category and resource type. | | Instrument transformers | Refers to Current Transformers (CTs), Voltage Transformers (VTs) and Metering Units (MUs). | | Metering Units | A unit that includes a combination of both Current Transformers and Voltage Transformers for the purpose of statistical or revenue metering | | РСВ | Polychlorinated Biphenyls are synthetic chemicals manufactured from 1929 to 1977 and was banned for use in 1979 in transformers, voltage regulators and switches. | | Preventative maintenance | This type of maintenance involves routine planned/scheduled work, including systematic inspections, detection, and correction of incipient failures, testing of condition and routine parts replacement designed to keep the asset in an ongoing continued serviceable condition, capable of delivering its intended service. | | Sub transmission | 33kV and 66kV networks. | | Transmission | Above 66kV networks. | | Voltage Transformers | Voltage or potential transformers are used to provide/transform voltages suitable for metering and protection circuits where voltage measurement is required. | ## **Appendix 3. Acronyms and Abbreviations** The following abbreviations and acronyms may appear in this asset management plan. | Abbreviation or acronym | Definition | | |-------------------------|--|--| | AC | Alternating current | | | AIDM | Asset Inspection & Defect Management system | | | ALARP | As Low As Reasonably Practicable | | | AMP | Asset Management Plan | | | Augex | Augmentation Expenditure | | | CBRM | Condition Based Risk Management | | | СВ | Circuit Breaker | | | СТ | Current Transformer | | | CVT | Capacitor Voltage Transformer | | | DC | Direct current | | | DEE | Dangerous Electrical Event | | | DGA | Dissolved Gas Analysis | | | DLA | Dielectric Loss Angle | | | EQL | Energy Queensland Limited | | | ESCOP | Electricity Safety Code of Practice | | | ESR | Queensland Electrical Safety Regulation (2013) | | | IoT | Internet of Things | | | ISCA | In-Service Condition Assessment | | | LDCM | Lines Defect Classification Manual | | | LV | Low Voltage | | | LVR | Low voltage regulator | | | MAC | Maintenance Acceptance Criteria | | | MSS | Minimum Service Standard | | | MSSS | Maintenance Strategy Support System | | | MU | Metering Unit | | | MVAr | Mega-VAr, unit of reactive power | | | NER | Neutral Earthing Resistor | | | NEX | Neutral Earthing Reactor | | | OLTC | On-load tap-changers | | | ОТІ | Oil Temperature Indicators | | | PCB | Polychlorinated Biphenyls | | | POC | Point of Connection (between EQL assets and customer assets) | | | POEL | Privately owned Electric Line | | | PRD | Pressure Relief Device | | | QLD | Queensland | | | REPEX | Renewal Expenditure | | | RIN | Regulatory Information Notice | | | RMU | Ring Main Unit | | | Abbreviation or acronym | Definition | |-------------------------|--| | SCADA | Supervisory Control and Data Acquisition | | SCAMS | Substation Contingency Asset Management System | | SDCM | Substation Defect Classification Manual | | SHI | Security and Hazard Inspection | | SVC | Static VAR Compensator | | THD | Total Harmonic Distortion | | VT | Voltage Transformer | | WCP | Water Content of Paper | | WTI | Winding Temperature Indicators | | WTP | Wet Transformer Profile |