
AusNet

Plant and Equipment Maintenance

Asset Management Strategy Transmission

AusNet

Document number:	AMS 10-19
Issue number:	9
Status:	Draft
Approver:	Stuart Dick
Date of approval:	01/10/2025

Table of Contents

Abbreviations and Definitions	4
1. Executive Summary	6
2. Introduction	7
2.1. Purpose	7
2.2. Scope	7
2.3. Asset Management Objectives	7
3. Background	8
3.1. Risk Management	8
3.2. Reliability Centred Maintenance	8
3.3. Maintenance Activity Types	9
3.4. SAP Notification Types	10
4. Drivers	13
4.1. Electricity Safety Act	13
4.2. Occupational Health and Safety Act	13
4.3. National Electricity Objective	14
4.4. Network Impact	14
5. Process and System Strategies	15
5.1. Live Work	15
5.2. Outage Coordinator	15
5.3. Spare Equipment	15
5.4. Plant Defect Reporting	16
5.5. Asset Management Information System	16

AusNet

	5.6. Health Assessment	16
	5.7. New Technologies	17
	5.8. Life Cycle Management	17
	5.9. Standards	18
6. C	urrent Maintenance Activities	19
	6.1. Cables, Transmission Lines Easements	19
	6.2. Primary Plant	21
	6.3. Secondary and Communications Equipment	25
	6.4. Station Infrastructure Equipment	26
7. St	trategies	29
8. Sc	chedule of Revisions	30
9 Δ	ppendices 1: Condition and Asset Monitoring Techniques	1

Abbreviations and Definitions

AC Alternative C	urrent
AEMO Australian Er	nergy Market Operator
AIS Air Insulated	Switchgear
CEOT Customer En	ergy and Operations Team
DB Distribution	Business
DC Direct Currer	nt
DGA Dissolved Ga	s Analysis
DNSP Distribution	Network Service Provider
EMS Environment	al Management System
FMECA Failure Mode	e, Effects and Criticality Analysis
FMI Field Mobile	Inspectors
FWP Field Work P	ractice
Gas Insulated	d Switchgear
LiDAR Light Detection	on and Ranging
MIPS Market Impa	ct Parameter Scheme
MTTR Mean Time 1	o Repair
NEM National Elec	ctricity Market
NOC Network Ope	erations Centre
O&M Operation ar	nd Maintenance
PACSIS Protection and	nd Control System Information System
PGI Plant Guidan	ce and Information
QRA Quantitative	Risk Assessment
RADAR Ratings Data	base Repository
RCM Reliability Co	ntred Maintenance
SAIP Smart Aerial	Imaging and Processing
SAP AusNet Serv	ces' asset management information system
SC Service Com	ponent
SCADA Supervisory	Control and Data Acquisition
SMI Standard Ma	intenance Instruction
SQRT Semi-Quanti	tative Risk Technique

AusNet

STPIS	Service Target Performance Incentive Scheme
SVC	Static VAR Compensator
UAV	Unmanned Aerial Vehicle
VAR	Volt Ampere Reactive
XLPE	Cross Linked Polyethylene
ZA	Corrective or condition-based maintenance
ZB	Scheduled Maintenance
ZD	Discrete Project (Asset Works)
ZE	Customer Defect
ZK	Unscheduled (Emergency) Maintenance

1. Executive Summary

AMS 10-19 outlines the plant and equipment maintenance strategies for management of assets in the Victorian electricity transmission network. This document provides background to the different categories of maintenance, condition monitoring and current maintenance techniques whilst exploring contemporary practice.

Through continual improvement and adoption of contemporary asset management practices a number of plant and equipment maintenance management initiatives are progressively being embedded in business process.

In summary, the strategic initiatives highlighted in AMS 10-19 include:

The following strategies will contribute to the management of network assets over their lifecycle.

- Ongoing commitment to ISO 55001 certification
- Enhanced focus on life cycle management of assets
- Digitisation of all maintenance measurement and inspection condition assessment data
- Explore use of Asset Performance Management systems to facilitate;
 - Development of plant and equipment performance and predictive analytics
 - Facilitate algorithmic condition assessments
- Development in reliability centred maintenance (RCM) modelling to inform maintenance, inspection, and replacement frequency and scope
- Refinement in strategic spares assessment and maintaining appropriate stocks

AusNet Services continues to perform plant and equipment maintenance in the most economic, efficient, and effective manner available under contemporary asset management techniques. AusNet Services' ongoing commitment to maintain ISO 55001 accreditation means we have an auditable asset management system facilitating customer's expectations to safely maintain the quality, reliability, and security of supply in an economic manner.

2. Introduction

2.1. Purpose

AMS 10-19 Plant and Equipment Maintenance (AMS 10-19) is intended to outline the mechanisms for plant and equipment maintenance on the Victorian electricity transmission network.

This document provides high level information regarding AusNet Services' existing plant and equipment maintenance techniques whilst establishing alignment with universally recognised standards and contemporary industry techniques.

In compliance with AusNet Services ISO 55001 Asset Management certification, progressive standardisation and increasing congruency in business process between transmission and distribution networks is being established.

AMS 10-19 is not intended to provide the same level of technical processes and maintenance frequencies that can be obtained from a Plant Guidance and Information (PGI), Standard Maintenance Instruction (SMI), Lines Practices and Procedures (LPP), Secondary Practices and Procedures (SPP) or a Field Work Practice (FWP) document.

2.2. Scope

This document covers the maintenance of AusNet Services electricity asset operating in Victoria including:

- Cables, Transmission Lines and Easements.
- Primary plant.
- Secondary equipment
- Communications Equipment.
- Station infrastructure equipment.

It does not cover the maintenance of the following:

- SCADA master station equipment in CEOT.
- Asset management information systems.

2.3. Asset Management Objectives

As stated in AMS 01-05 Strategic Asset Management Plan, the high-level asset management objectives are:

- 1. Safety
- 2. Reliability
- 3. Resilience Compliance
- 4. Planning and Decision-making
- 5. Sustainability
- 6. Competency and capability
- 7. Continuous Improvement

3. Background

3.1. Risk Management

As assets degrade, their likelihood of failure increases which creates compliance, safety, and performance risks.

AusNet Services maintains a risk management system that has been designed to AS ISO 31000 Risk Management – Guidelines to support the effective management of risks.

Risk are rated and prioritised under the following categories:

- Health and safety (Employees and public).
- Environment and community.
- Reputation.
- Customers.
- Regulation, legal and compliance.
- Management impact and people.
- Financial impact.

The main aim of maintenance of plant and equipment is to retain or restore the functionality of plant and equipment and mitigate identified failure risks.

AusNet Services uses a range of techniques to identify and asset risk and thus determine the maintenance requirements of each asset class.

Further information is provided in AMS 01-09 Asset Risk Assessment Overview.

3.2. Reliability Centred Maintenance

Reliability Centred Maintenance (RCM) is a method of identifying and selecting failure management strategies to achieve the required safety, availability, and economy of operation efficiently and effectively for a given operating context.

RCM is structured around the following seven questions:

- (1) What are the functions and associated performance standards of the asset in its operating context?
- (2) In what ways does it fail to fulfil its functions?
- (3) What causes each functional failure?
- (4) What happens when each functional failure occurs?
- (5) In what ways does each functional failure matter?
- (6) What can be done to predict or prevent each functional failure?
- (7) What should be done if nothing can be done to predict or prevent a functional failure?

Questions 1, 2 and 4 resemble a Failure Mode, Effects and Criticality Analysis (FMECA). Questions 6 and 7 consider the activities that should, or should not, be undertaken to address the critical failure modes in an asset's specific operating context.

The purpose of RCM is to identify the most appropriate maintenance tasks to address the critical failure modes of an asset within its operating context.

The outputs of RCM analysis are be used to:

- Identify failure modes and maintenance tasks to be modelled in Availability Workbench (AWB) to determine asset risk levels and compare different maintenance and replacement strategies.
- Review maintenance instructions (SMIs, LPPs, etc) so that the most appropriate maintenance tasks are being undertaken.
- Determine measurement points to be included in asset inspections to allow trending of asset condition.
- Review object, damage and cause codes in SAP to check that failure data is being captured as
 accurately as possible.

AS IEC 60300.3.11 Dependability management – Part 3.11: Application guide – Reliability centred maintenance defines two types of maintenance action:

- Preventative.
- Corrective.

Preventative maintenance is undertaken prior to failure and is normally scheduled or based on a predetermined set of conditions. It can be condition-based (monitoring the condition until failure is imminent) or functional checks to detect hidden failures. It can be predetermined based on a fixed interval (such a calendar time, operating hours or number of cycles or operations).

Corrective maintenance restores the function of an item after failure has occurred or performance fails to meet stated limits and is unscheduled.

RCM identifies the optimal preventive and corrective maintenance tasks. Development in RCM modelling can be used to inform optimum maintenance, inspection, and replacement frequency.

3.3. Maintenance Activity Types

3.3.1. Preventative Maintenance

Preventive maintenance is undertaken prior to failure and relates to maintenance carried out to reduce the probability of failure or to address the degradation of the functioning of an item.

Preventative maintenance can include:

- Inspection.
- Testing.
- Condition monitoring/assessment.
- Proactive replacement or refurbishment.

3.3.1.1. Inspection

Inspection is the act of examining something, such as looking for visible asset defects or checking the thickness of a pole.

3.3.1.2. Testing

Testing is the act of testing something to check that it is functioning adequately, such as secondary injection testing of protection relays. Testing is performed to either identify equipment problems, diagnose equipment problems or to confirm that repair measures have been effective.

3.3.1.3. Condition Monitoring/Assessment

Condition monitoring is the process of monitoring a parameter, or parameters, of a piece of equipment to identify a significant change which is indicative of a developing fault. It is a subset of inspection.

Appendix C provides examples of condition monitoring techniques aligning failure modes.

3.3.1.4. Proactive Replacement or Refurbishment

Plant and equipment that is maintenance intensive is selectively replaced or refurbished according to the technical and economic evaluation of proposals. Replacement alternatives include the rationalisation of line and switching arrangements in conjunction with the system planner.

The basis for fleet or sub-fleet specific repairs is usually design or manufacturing deficiencies that have been identified during inspection or maintenance activities on equipment which has been in service for several years.

3.3.2. Corrective Maintenance

Corrective maintenance is a task performed after a piece of equipment has failed, where failed may mean:

- Asset has alarmed warning of a functional failure
- An inspection identified a defect that needs rectification.
- A test identified a piece of equipment which is not functioning to specification.
- A condition monitoring identified a change in condition indicative of an imminent failure.

3.4. SAP Notification Types

There are several notification types within AusNet Services' asset management information system (SAP) to facilitate work to be undertaken on the assets. The notification types relevant to plant and equipment maintenance are:

- (1) ZA Corrective or condition-based maintenance
- (2) ZB Inspection/overhaul or scheduled maintenance
- (3) ZD Discrete projects (Asset works)
- (4) ZE Customer defect
- (5) ZK Unscheduled (emergency) maintenance.
- (6) ZL (shared network) system incident notification

ZB notifications are classified as preventative maintenance. The other four notification types are corrective maintenance, the final type trigger a root cause investigation, with findings available to AFMO.

Each of these is described in the following sections

3.4.1. Corrective or Condition-based Maintenance

A Corrective or Condition-based Maintenance "ZA notification" is raised to request maintenance work identified by inspection/overhaul or scheduled maintenance (ZB) work.

ZA notifications are also used to request of fault investigation and rectification work of AusNet Service assets.

3.4.2. Inspection/Overhaul or Schedule Maintenance

Work conducted under Inspection/Overhaul or Scheduled Maintenance ZB notifications are preventative maintenance activities undertaken according to a predetermined scope at predetermined intervals, which may include:

- 1. Inspection;
- 2. Testing;
- 3. Condition assessment; and
- 4. Preventative maintenance.

An inspection is the process of inspecting for defects.

Testing is a test that is performed to either identify asset problems, diagnose asset problems, detect hidden failures, or to confirm that repair measures have been effective.

Condition assessment is the process of assessing the condition of the asset.

Preventative maintenance is maintenance that is regularly performed on an asset to reduce the likelihood of it failing.

The scheduled maintenance program covers all AusNet Services' electricity transmission assets including primary, secondary, lines, communications, facilities, and easements.

The scheduled maintenance program is designed for efficient and effective delivery based on four main criteria:

- Time.
- Duty, eg Number of operations.
- Equipment condition/ risk.
- Equipment outage groups

The time criterion is the time elapsed (or interval) between scheduled overhauls but also depends on opportunity and/or inspection.

The number of operations criterion is the number of service operations and/or fault operations occurring on certain items of plant such as circuit breakers.

The equipment condition / risk criterion is used to inform the base scope of works for maintenance of line easements and facilities and interval

The Equipment outage groups are used to align maintenance intervals of adjacent equipment accessed under the same outage condition. These facilities efficient use of resources and minimises network outages.

Because of these four criteria, the scheduled maintenance program tends to be cyclic in nature.

Recommended scheduled maintenance intervals are documented in PGI 02-01-02 Summary of Maintenance Intervals – Transmission.

Scheduled maintenance intervals are regularly reviewed to check that they are set at optimum levels. Scheduled maintenance programs are managed within SAP.

A maintenance plan listing all scheduled maintenance (ZB) tasks for the next 12 months is produced as a part of the budget process leading up to the new financial year. In addition, a maintenance forecast plan is derived for the following 12 months beyond the original maintenance plan but with less accuracy.

There is a degree of flexibility in the development of the annual maintenance plan, allowing for optimisation of the effectiveness of maintenance activities. A tolerance band is applied to the recommended maintenance intervals, enabling scheduled maintenance tasks to be brought forward or deferred without compromising maintenance standards and plant performance. This 'bringing forward' or deferring of scheduled maintenance allows for more efficient management of the overall program and allows AusNet Services to maximise the benefits of outages that may be required for

other reasons, for example the coordination and efficient use of labour and the maximisation of asset availability.

Progress towards completion of the annual maintenance plan is tracked over the 12-month period to support satisfactory completion. As part of this tracking process, monthly progress reports are produced and circulated widely within AusNet Services.

Recurrent works are those maintenance activities that are of a regular and ongoing nature.

3.4.3. Discrete Projects and Customer Defect

Discrete Projects (or Asset Works) ZD notifications are defined as non-recurrent Operating and Maintenance (O&M) projects which are outside the scope of the Scheduled Maintenance ZB notifications.

Customer Defect ZE notifications are used by AusNet Services to request customers to maintain their assets which are connected to AusNet Service's Network.

Asset works, or non-recurrent works, are maintenance activities that cannot be capitalised under current financial guidelines and have a scope of work that is too large or specialised to be included in the routine maintenance plan/inspection.

They are neither time nor operation based and so, are generally non-repetitive one-off restorative or investigative actions, put in place to respond to specific asset health problems.

Some programs are long running, such as the power transformer corrosive sulphur oil remediation program, which is expected to run for many years due the size of the asset fleet. Non-recurrent works can also include significant corrective maintenance work such as root cause investigations, establishing new condition assessment techniques and major failure repair work utilising OEM support.

3.4.4. Unscheduled Maintenance

Unscheduled (emergency) maintenance ZK notifications are unscheduled and emergency maintenance work carried out to no predetermined plan and not in accordance with an established time schedule, but after reception of an indication regarding the condition of an item of equipment.

The difference between ZK and ZA notifications is the type of fault work order that it creates:

- ZK fault notifications are trouble orders triggered by the PowerOn (Fusion) that will create a fault work order in the SAP system. These are managed by CEOT.
- ZA notifications are a result of work prescribed in scheduled maintenance ZB notifications.

Unscheduled maintenance is generally due to breakdown or forced maintenance, however depending on the situation there can be opportunistic maintenance activities undertaken.

These opportunistic maintenance activities can be categorised into non-recurrent works. This is where an unexpected requirement or opportunity to access plant and equipment arises and the work is not prescribed by a scheduled maintenance (ZB) schedule of work.

Unscheduled maintenance includes carrying out corrective/repair works to plant and equipment under non-emergency conditions and vegetation management work online easements resulting from inspections. This type of work is not scheduled in SAP. A budget allowance for both unscheduled and breakdown maintenance is made in the annual maintenance plan.

Emergency maintenance is a subset of unscheduled maintenance and is repair work that is required to be performed within 24 hours of the trigger event, immediate or short-term action is required to rectify plant or equipment faults typically in order to restore the network.

Due to health, safety and environmental considerations and the high reliability required from transmission plant, it is desirable to minimise the amount of unscheduled and emergency maintenance performed.

4. Drivers

4.1. Electricity Safety Act

AusNet Services is subject to several explicit legislative obligations concerning worker safety.

The Electricity Safety Act 1998 requires AusNet Services, as a major electricity company, to:

design, construct, operate, maintain and decommission its supply network to minimise, as far as is practicable:

- (1) The hazards and risks to the safety of any person arising from the supply network.
- (2) The hazards and risks of damage to the property of any person arising from the supply network.
- (3) The bushfire danger arising from the supply network.

The Electricity Safety Act 1998 defines "practicable" to mean having regard to:

- (1) The severity of the hazard or risk in question.
- (2) State of knowledge about the hazard or risk and any ways of removing or mitigating the hazard or risk.
- (3) The availability and suitability of ways to remove or mitigate the hazard or risk.
- (4) The cost of removing or mitigating the hazard or risk.

4.2. Occupational Health and Safety Act

The Occupational Health and Safety Act 2004 require AusNet, as an employer, to:

so far as far as is reasonably practicable, provide and maintain for employees of the employer a working environment that is safe and without risks to health.

For the purposes of the Occupational Health and Safety Act 2004, when determining what is (or what was, at a particular time), reasonably practicable in ensuring health and safety, regard be had to the following matters:

- (1) The likelihood of the hazard or risk concerned eventuating.
- (2) The degree of harm that would result if the hazard or risk eventuated.
- (3) What the person concerned knows, or ought reasonably to know, about the hazard or risk and any ways of eliminating or reducing the hazard or risk.
- (4) The availability and suitability of ways to eliminate or reduce the hazard or risk.

In economic terms, "practicable" and "reasonably practicable" requires AusNet Services to address safety hazards up until the point that the costs of remediation become grossly disproportionate to the benefits.

4.3. National Electricity Objective

The National Electricity Objective, as stated in the National Electricity Law is:

"to promote efficient investment in, and efficient operation and use of, electricity services for the longterm interests of consumers of electricity with respect to:

- Price, quality, safety and reliability and security of supply of electricity
- The reliability, safety and security of the national electricity system; and
- the achievement of targets set by a participating jurisdiction—
 - for reducing Australia's greenhouse gas emissions; or
 - that are likely to contribute to reducing Australia's greenhouse gas emissions."

4.4. Network Impact

Significant maintenance work such as plant refurbishment or replacement may require outage coordination where live work is not an option.

Outage costs are currently defined by schemes governed by the AER:

(1) 1. Service target performance incentive scheme (STPIS) – Service Component (SC); and

The STPIS-SC is focussed on forced and fault network element outages and reliability and the STPIS-MIC component provides an incentive for outage coordination that does not cause substantial network outage constraints in the National Electricity Market (NEM).

For network security and efficiency reasons, there is a requirement to coordinate maintenance work with other operational and construction tasks in order to minimise required outages.

Careful consideration to the criticality of network elements is required when prioritising the maintenance effort.

5. Process and System Strategies

5.1. Live Work

Where appropriate, the use of live working techniques can be used to reduce the outage requirements when conducting maintenance tasks.

The safe use of live maintenance work on transmission lines has matured and is appropriately utilised.

AusNet Services has explored the use of live maintenance works in terminal stations but has no immediate plans to introduce any such maintenance practices. Inspection and assessment techniques that avoid close proximity to energized conductors and do not require planned outages continue to be evaluated as part of ongoing innovation efforts.

5.2. Outage Coordinator

Outage coordination is a key aspect in minimising network impacts. Efficient operational and maintenance practices that result in coordinated planned outages may also reduce network impacts caused by unplanned outages. Ongoing communication between AusNet Services and distribution businesses (DBs) and generation companies to refine outage coordination for maintenance, construction and operations work is required.

To this end, regular meetings and discussions are held between relevant groups within AusNet Services and with distribution businesses (DBs) and generation companies.

Work plans are produced and optimised in order to minimise outages and coordinate work between AusNet Services field areas and with the various DBs, AEMO and generation companies. Wherever possible, scheduled maintenance tasks are planned in order to take advantage of other works, such as augmentation projects, so that outages and costs can be minimised, and the use of labour and the availability of plant can be maximised.

5.3. Spare Equipment

Spare equipment is held so that, in the event of a network outage, the Mean Time to Repair (MTTR) and customer impact is reduced through the availability of an appropriate spare part or equipment.

Appropriate stocks of spare equipment are held at strategic locations to support both scheduled and unscheduled maintenance so that the reliability of the network is not compromised.

Depending on economics, equipment type, availability, and system reliance; strategic spares are available for specific assets.

Unlike general spare equipment being located in most stores, the strategic spares are located on specific centralised sites to reduce logistical delays. Strategic spares are evolving in parallel to assets installed on the network and need to be continually reviewed.

The major failure of an asset may result in significant damage to the asset concerned and collateral damage to the surrounding equipment. Due to the long lead times and as manufactures do not provide a strategic spares service, it is necessary to have strategic spares for many of the major asset classes.

Further details can be found in AMS 10-128 Spare Equipment Policy – Electricity Transmission Networks.

5.4. Plant Defect Reporting

All AusNet Services employees have a responsibility for asset stewardship. Defect reports need to be issued when any abnormal conditions or defects are detected during planned maintenance, inspections or as a result of a breakdown.

All defects need to be recorded in the asset management system, SAP, to enable future analysis of defect trends and to plan mitigation strategies.

In addition, the defect management system integrates the System Incident Reports, Defective Apparatus Reports and SAP to provide a number of strategic asset management and maintenance activities.

Defects are investigated in an appropriate time frame and recommendations to minimise the occurrences of the same or similar defects are put forward.

For further information, refer to TOC 10-21 Incident Reporting – Electrical Operating Procedure Transmission.

5.5. Asset Management Information System

An appropriate asset management information system is required in order to progressively evolve a high level of understanding of asset health and performance. The AMIS supports various models that are used to predict an assets end-of-life, so that economic refurbishment or replacement can be achieved before the onset of low reliability or availability and applicable risk to customers. This would be used in the development of plant and equipment performance and predictive analytics.

The main asset management information systems are SAP for asset and work management, protection and control system information system (PACSIS) for protection and control relay settings, and Ratings Database Repository (RADAR) for plant and equipment ratings

All maintenance reports should be entered and stored electronically in SAP so that the information presented can be readily used to determine the condition of the asset and hence make sound asset management decisions.

5.6. Health Assessment

AusNet Services conducts condition assessments of plant and equipment which play an integral role in plant performance and condition-based maintenance works programs.

Equipment history including loading, temperature, operations, outages, and faults provides valuable information on the condition, performance, useful life, and remaining service potential of assets.

The current condition monitoring program combines visual inspections, offline and online monitoring and scanning to assess asset condition which is used in the development of risk-based asset replacement models and optimised maintenance schedules.

The information gathered is used to create several measures of condition (known as 'asset health indices') for each asset which are combined into a single 'Asset Health Score'.

AusNet Services continues to progress towards more algorithmic condition assessment informed by condition data held within the asset management information systems.

The significant challenges to this objective include economic viability, cost efficiency and identifying the most effective approaches for a dynamic reliability-based inspection and maintenance regime over an asset's lifecycle.

To capture key asset health indices, further development of current techniques used for condition assessments is required. Refinement of condition assessment methodology to facilitate algorithmic condition assessments.

The following activities are progressively being applied to support condition-based monitoring and maintenance:

- Selectively increasing the use of online (and off-line) conditioning monitoring methods to predict the need for and extent of maintenance.
- Understanding and developing the use of diagnostic testing techniques to predict the need for and extent of maintenance on appropriate equipment.
- Where justified, new assets have built-in condition monitoring and self-testing facilities. This is in
 order to reduce the maintenance effort and outage requirements and drive maintenance costs
 below expected regulated levels.
- Assessing the functionality of existing, installed condition monitoring equipment and checking that the data provided is analysed and used effectively.
- Optimisation of maintenance based on time intervals, operations, or duty through the assessment of plant condition and performance.

5.7. New Technologies

Over the longer term, AusNet Services continues to adopt and expand the use of emerging technologies where they are cost-effective and operationally viable. Technologies such as Smart Aerial Imaging and Processing (SAIP), Light Detection and Ranging (LiDAR), and unmanned aerial vehicles (UAVs) for live defect inspections have become standard practice in recent years. Future initiatives include broader implementation of live maintenance techniques, enhanced use of video and photographic imagery combined with machine learning-based anomaly detection, and asset condition verification. These will be deployed where technologies are proven, robust, and economically justified. Additionally, Asset Performance Management (APM) systems are being trailed on critical assets to provide advanced platforms for automated monitoring, analysis, and optimization of asset performance, reliability, and lifecycle management.

5.8. Life Cycle Management

Life cycle management is an approach that can be used by all types of business in order to improve their sustainability performance. It can be used to target, organise, analyse, and manage produce-related information and activities towards continuous improvement along the product life cycle. It aims to assist in managing the growing demand and expectations in the field of life cycle management.

In a few of the key activities there was a focus on the quality of supply for the assets and maintaining procurement standards. Therefore, there is an enhanced focus on the life cycle management of the assets.

5.9. Standards

Until April 2014, the AusNet Services' asset management system conformed to the requirements of the British Standards Institute's Publicly Available Specification PAS 55-1:2008 for Asset Management. This asset management system now conforms to the requirements of ISO 55001 Asset Management – Management System: Requirements.

6. Current Maintenance Activities

Transmission network assets are divided into the following categories:

- Cables, Transmission Lines and Easements.
- Primary plant.
- Secondary equipment.
- Communication Equipment
- Station infrastructure equipment.

The maintenance intervals are documented in PGI 02-01-02 Summary of Maintenance Intervals – Transmission.

6.1. Cables, Transmission Lines Easements

6.1.1. Cables and Easements

There are two main categories of power cables within the transmission network:

- Interconnecting cables; and
- Station cables.

Interconnecting cables are utilised to connect or form part of connecting one terminal station to another terminal station. AusNet Services owns and maintains the following interconnecting cables:

- One 220 kV interconnecting cable between Brunswick and Richmond (10km);
- One 220 kV interconnecting oil filled cable section between Eildon to Thomastown Line; and
- Two 66 kV interconnecting oil filled cable between Loy Yang Substation and Loy Yang Power Station.
- Two 220kV interconnecting oil filled cables sections between NPSD to BLTS /FBTS Lines

Station cables connect items of plant within a terminal station. There are a growing population of station cables installed within the various terminal stations through Victoria operating at each voltage level of the transmission network depending on the plant to which the cable is connected.

The majority of interconnecting power cables have been in service for more than 40 years. The majority of station cables are less than 20 years.

The key asset management strategies for Station power cables are to combine cable replacement, where possible, with other capital works, otherwise, repair or replace based on condition. Additionally, a contingency plan for oil filled cables has been developed and implemented to help manage the impact of a fault on an oil filled cable.

Continue rigorous inspection regime of manufacturing plants so that supply chain quality is maintained. Continue to enhance commission testing protocols, ensuring all new assets are effectively tested prior to being placed into service, thus giving a baseline for all future condition assessment test programs.

On-line continuous monitoring techniques are beginning to be employed fitted at time of installation across critical circuits utilising fibre optic technologies. These include but are not limited to the use of Distributed Temperature Sensing (DTS)) systems.

Continue to update cable asset records and fault response plans.

Key maintenance strategies for all cables include the regular inspection of all above ground cable assets incorporated into the station inspection program, and cable route above ground condition. This looks for obvious signs of deterioration of the main insulator, termination base stand-off insulators, connections and any other equipment associated with the terminations (e.g. link boxes). The inspection also covers the visual condition of the cable as it exits the ground, looking for obvious signs of oil leaks, mechanical damage, water ingress or the like.

Oil filled cables now have routine scheduled oil samples taken to assess their insulation condition through a DGA and dielectric withstand test.

For solid insulation cables, insulation condition assessment, the new method continues to be to expand the offline electrical condition assessment testing program to all transmission network cable circuits past their expected mid-life stage. The tests will include HV withstand and insulation Partial Discharge (PD) and Dielectric Dissipation Factor (DDF) tests. Testing long interconnecting cable sections remains a challenge due to high capacitive loading, which limits the effectiveness of available conventional diagnostic methods. As part of AusNet Services' asset strategy, the procurement of specialised high-voltage (HV) test equipment from overseas is being considered for critical cable circuits to support accurate condition assessment for optimum risk mitigation asset planning.

For further information, refer to AMS 10-66 Power Cables.

6.1.2. Transmission Lines and Easements

Transmission line easements provide safe passage for line workers and machinery to transmission lines so that maintenance activities can be performed. These line easements are approximately 5,017 km in length and cover a total area of approximately 21,600 hectares. The volume of transmission line easements has increased marginally in recent years.

There are different types of routine inspections and patrols:

- Vegetation patrols inspection patrols of transmission line easements using Light Detection and Ranging (LiDAR) technology. The easements are inspected to support the maintenance of regulatory clearances between vegetation and transmission lines and towers. Data is also available to assess conductor ground clearances and identify unauthorised clearance issues.
- Line and Easement patrols Line and easement inspections are regularly completed on the transmission lines and easements, by helicopter or vehicle to identify equipment defects or abnormalities. Inspections also identify surrounding drainage or ground issues, unauthorised structures or fences within easements.
- Condition Assessments inspection and scoring the condition of the tower and associated equipment by climbing it.
- Smart Aerial Imaging and Processing (SAIP) inspection of phase conductors, ground wire and associated hardware, to identify defects or abnormalities
- Infrared survey to inspect conductors, joints, and insulators to identify defects or abnormalities

Smart Aerial Imaging and Processing (SAIP) has been used to build robustness of the risk assessments of conductors and ground wire on lines. High resolution pictures are processed (through software) and abnormalities such as, broken strands, white powder or conductor thickness change, lose spacers clamps, broken vibration dampers are detected and flagged for review. This aerial inspection technique has become a routine activity since 2020.

Light Detection and Ranging (LiDAR) is a laser based surveying technique which can create a three dimensional digital topology of a transmission line and its easement corridor to quantify the physical clearances between the electrical phases of a transmission circuit, the extent of conductor movement

and the physical clearances to vegetation, ground and encroachments in the line easement. This inspection technique has been introduced to assess the condition of vegetation and the adequacy of easement dimensions as well as validating conductor to ground clearances under varying loading conditions. Its usage will grow allowing a greater level of surety over vegetation clearances, electrical safety clearances and transmission line rating. This aerial inspection technique has become a routine activity since 2020.

Infrared surveys are completed to identify overheating due to any developing high resistance joints or insulators defects or abnormalities requiring rectification maintenance activities.

For condition monitoring further research is being undertaken on introducing additional assessment tools for the transmission line conductor corrosion and the expanded use of unmanned aerial vehicle (UAV) for condition assessment currently performed by climbing inspections.

The majority of AusNet Services' transmission assets are situated outdoors and therefore are exposed to the elements. Preventative measures (such as ground level painting and sacrificial anodes) are used to protect tower footings as the steel footings are buried directly into the earth and would eventually corrode if not protected. Sacrificial cathodic protection systems have also been applied to critical tower locations. There is a routine maintenance program in place to regularly check condition of the cathodic protection systems.

Some key asset strategies are continuing to assess the condition of transmission line insulators during structure climbing inspections and during the annual line and easement inspections. Insulator washing is also performed as routine on the known higher polluted line sections and on majority of lines scheduled only a condition needs basis. A key strategy is to continue to assess the condition of transmission line structures during detail inspections, replace bent members, and initiate corrosion mitigation works, including member replacement and selective painting to maintain overall tower condition.

For further information, refer to the following strategies:

- AMS 10-65 Line Easements
- AMS 10-75 Transmission Line Insulators
- AMS 10-77 Transmission Line Structures
- AMS 10-79 Transmission Line Conductors
- AMS 10-78 Transmission Line Structure Foundations.

6.2. Primary Plant

Primary plant consists of:

- Capacitor banks.
- Instrument transformers.
- Disconnectors, isolators and earthing switches.
- Power transformers and Shunt Reactors
- Surge diverters.
- Circuit breakers.
- Gas Insulated Switchgear.
- Static VAR compensators.

Planned station rebuilds projects integrating network augmentation as directed by the Australian Energy Market Operator (AEMO) or VicGrid and customer requirements defined by distribution network service providers (DNSPs) will include the economic replacement of some critical primary plant assets.

6.2.1. Capacitor Banks

Capacitor banks are primarily used to stabilise the network operating voltage particularly during heavy demand periods. Capacitor banks can also minimise electrical power losses, optimise the utilisation of transformers and lines augmentations and act as harmonic filters in static VAR compensators.

Typical maintenance activities aim to identify loose connections, oil leaks, swelling of cans and condition of paintwork.

Key activity for new assets includes to continue to purchase capacitor banks to the latest specification with capacitors internally fused and capacitor bank detuned against harmonic resonance.

Other key strategies for continuing maintenance of capacitor banks include continuing to maintain capacitor banks in accordance with PGI 02-01-02 and to continue to monitor the failure rate.

For further information, refer to AMS 10-53 Capacitor Bank.

6.2.2. Instrument Transformers

Instrument transformers include:

- Current Transformers (CT);
- Voltage Transformers; and
- Capacitive Voltage Transformers (CVT).
- Capacitive Voltage Dividers (CVD)

They provide accurate measurements of the operating voltages and currents necessary for the safe, reliable, and economic protection and control and have a relatively light maintenance regime in comparison to other primary plant.

The volume of instrument transformers in service continues to increase with expansion of the network.

There have been significant replacements of both current transformers and voltage transformers as part of major asset replacement projects and in smaller projects focused on managing specific supply risks to consumers, safety risks to workers and collateral plant damage risks within terminal stations.

Key strategies include to maintain instrument transformers are to continue oil DGA testing and visual inspection during regular station inspections.

For further information, refer to AMS 10-64 Instrument Transformers.

6.2.3. Disconnectors, Isolators and Earth Switches

The purpose of an earth switch is to electrically connect selected isolated equipment to the station earth grid. This means that the "earthed" equipment is at the same potential to that of the station earth arid.

The combined use of disconnectors and earth switches creates a safe working environment for maintenance or associated works, by preventing the formation of an electrical potential on the selected equipment.

There are three levels of overhauls associated with isolators and earthing switches:

- Inspection and lubrication;
- Minor adjustments, dismantling and lubrication; and
- Major overhaul consisting of dismantling all contacts, pivots and bearings for thorough cleaning and re-lubrication.

A key activity for new assets includes a continue to purchase fully type tested disconnectors and earth switches, motorised options at higher voltages that reduce manual handling, and maximise use of modular assemblies, that minimise on site build and variability.

Key strategies for maintenance of the disconnectors and earth switches are maintaining disconnectors and switches in accordance with PGI 02-01-02, and product specific SMI, and ensuring spares are kept available and salvaged from replacement projects. Redesign of some manual operated earth switches are being explored to eliminate manual handling risks that routine maintenance is unable to fully address.

For further information, refer to AMS 10-59 Disconnectors and Earth Switches.

6.2.4. Power Transformers and Shunt Reactors

Power transformers are required to transfer power between circuits to maintain quality and security of supply in a safe manner. They are utilised to transform voltage levels depending on their specification and use in the network.

Shunt Reactors are required to stabilise the network operating voltage particularly during light demand periods. In asset management and maintenance terms have similar needs to power transformers.

Transformers in Victoria are operated at high utilisation levels as a result of the probabilistic planning criteria that are used to plan the transmission network in Victoria.

The long-term targeted replacement and component refurbishment programs are demonstrating positive outcomes in effective management of the fleet's reliability.

To maintain a high level of reliability and maintain the satisfactory operation of every transformer, a certain level of maintenance is required.

Continued investment in power transformer refurbishment and replacement is necessary to economically manage failure risks which are being driven by the value of unserved energy, declining reliability, and measurable deterioration.

Other activities including carrying out routine monitoring and testing of a transformer on a periodic basis to detect incipient failure behaviour and assess general condition and continue the program to repair significant oil leaks and oil damaged wiring on transformers.

Online gas and moisture monitors are techniques that monitors gas composition and moisture in power transformers in real time.

Condition monitoring of power transformers using six yearly testing of bushings, windings, insulation, and surge arresters. These tests are conducted on the winding impedance/resistance, ratios across all taps and frequency response analysis for power transformer and oil filled reactors winding condition assessment.

Other tests conducted on the bushings, insulation, and surge arrestors include capacitance and dielectric dissipation factor and partial discharge.

All these tests together provide information on the condition and integrity of transformer components. The deterioration rates of at-risk transformers are tested on a more frequent basis to schedule interventions or alter alarm and protection system parameters, cooling systems and operating temperatures.

Key strategies for Power transformers and oil-filled reactors include continuing to maintain them as per their scheduled maintenance inspections.

For further information, refer to AMS 10-67 Power Transformers and Oil-filled Reactors.

6.2.5. Surge Diverters/Arrestors

Surge diverters are used on electrical power systems to protect expensive equipment from over voltage caused by lightning strikes or transient switching voltages. Surge diverters are sacrificial items of equipment and are meant to operate and if necessary, fail in preference to protect the expensive plant equipment such as transformers.

The key activity for new surge diverters is to continue to purchase gapless polymer housed metal oxide surge arresters.

Other key strategies in continuing to maintain surge diverters are to continue with routine visual inspection, annual thermo-vision scans, and electrically test during offline testing of power transformers.

For further information, refer to AMS 10-73 Surge Diverters.

6.2.6. Gas Insulated Switchgear

Gas insulated switchgear (GIS) is an alternative construction technique to AIS as it encloses all equipment and integrates all live parts within compartmentalised SF6 filled metal enclosure. It is typically used when a compact layout is required. The use of GIS is limited as the equipment cost is significantly higher in comparison to AIS due to its compactness, significantly higher mass of SF6 insulation medium and switching mechanism technology.

A full GIS is comprised of the same equipment functionality as an AIS station and maintenance is required for each of the individual functions, circuit breakers, disconnectors, earth switches, CT, VT, bus compartments, and line entry bushings and surge arrestors.

There are three levels of maintenance associated with GIS:

- Inspection and functionality checks,
- Minor adjustments, external dismantling and lubrication.
- Diagnostic tests and investigation of equipment if diagnostic tests indicate a problem.

The insulation health of GIS is more critical than equivalent AIS due to the compactness of the equipment. Insulation monitoring for switchgear installations requires SF6 quality, i.e regular moisture and SO2 checks. Insulation failure risk is further mitigated by regular non-invasive scanning programs. Ultra-High Frequency Partial Discharge detectors have bene fitted and used for annual monitoring of GIS health. This condition information is to avoid imminent failure as well as to develop trends for insulation failure probability.

A key asset strategy is to continue maintaining Gas Insulated Switchgear in accordance with PGI 02-01-02.

For further information, refer to AMS 10-62 Gas Insulated Switchgear.

6.2.7. Circuit Breakers

There are five different technologies of circuit breaker in use across the network, each having their own specific maintenance requirements. Namely bulk oil CB with graded bushings, minimum oil CB, SF6 live tank CB (with both hydraulic and spring mechanisms), SF6 dead tank CB with gas filled bushings, and vacuum circuit breakers.

Due to the consequence of bulk oil circuit breaker bushing failures, an active program was introduced in 2002 with offline electrical testing and replacement of problematic bushings using spares.

Key asset strategies for CB are to continue scheduled preventative maintenance as per their specific Standard Maintenance Instructions for each circuit breaker type. A key activity with circuit breakers is to continue to capture failure investigation learnings into CB specific maintenance activities, to avoid repeat issues.

For further information, refer to AMS 10-54 Circuit Breakers.

6.2.8. Static VAR Compensators

Static VAR Compensators (SVC) provide reactive support for voltage stability on the Victorian electricity transmission network. SVCs are required for dynamic voltage control at critical locations on transmission network. The use of the SVC facilitates continuous voltage stability enabling the network

to withstand unplanned outage events such as the loss of a line following lightning strikes. Obsolescence of the control systems increases existing risks associated with failure as fault rectification works are slow and difficult resulting in extended unplanned outages. There are currently no formal condition monitoring activities for the SVC.

The key asset strategy for SVCs is to continue maintaining them in accordance with PGI 02-01-02.

For further information, refer to AMS 10-71 Static VAR Compensator.

6.3. Secondary and Communications Equipment

Secondary and Communications equipment consists of:

- DC supplies.
- Metering.
- Protection schemes.
- Controls and instrumentation.
- AC switchboards.
- Communication equipment.

Protection and control assets are maintained in accordance with PGI 02-01-02 and SPP 02-00-01. Communication assets are maintained in accordance with PGI 02-0104. Regular inspection, testing and maintenance facilitate timely diagnosis of asset failures with the potential to lead to false operation, system unavailability or other operational instability. Secondary assets include devices to measure the network's electrical operating parameters and monitor the function and condition of selected primary network assets.

Secondary assets, being electronic/microprocessor based become obsolete within a typical timeframe of 15 years when they are no longer supported by manufacturers, are technically incompatible with interfacing equipment or are no longer able to provide the functionality established in industry standards or regulation.

An overarching strategy is to integrate secondary and communications asset modernisation projects within Terminal Station rebuild projects or major primary asset replacement projects wherever economic.

The serviceability of the system is defined as the ability of a secondary system to deliver its expected function appropriately and is assessed according to three strategic replacement criteria:

- Compliance.
- Modernisation.
- Obsolescence.

The DC power supplies are located in terminal stations to provide critical DC power for the operation of electrical protection, control, metering and SCADA systems associated with the electricity transmission network. AC power supplies provide the power to DC chargers and auxiliary equipment within the station

Key issues are performance risks and functionality limitations of deteriorating batteries and chargers beyond their economic service life and establishment of a condition monitoring program for economic management of DC power supplies.

Communication systems primarily provide electrical protection signalling between generating stations and terminal stations, and between terminal stations and other terminal stations.

The systems also provide operational voice and business communication between Network Operations Centre (NOC), offices, Customer Energy and Operations Team (CEOT), depots, terminal stations, generating stations, distribution zone substations, connected interstate transmission and generating stations and AEMO.

All new and replacement assets will be designed in accordance with the Station Design Manual and current design standards, undertake replacement of complete protection system associated with individual items of primary plant/network sections, rather than individual protection schemes/relays.

Replacement activities shall be incorporated within primary plant replacement, station refurbishment or network augmentation activities as far as practicable, in order to maximise operational efficiency and minimise network disruption.

Integrate secondary asset modernisation projects within terminal station rebuilt project or major asset replacement projects whenever economic.

The key asset strategies are to replace the end of life products/platforms and establish redundant (independent) communications bearers where justified.

For further information, refer to the following strategies:

- AMS 10-68 Secondary Systems
- AMS 10-52 Auxiliary Power Supplies
- AMS 10-56 Communication Systems

6.4. Station Infrastructure Equipment

Station infrastructure equipment consists of:

- Civil infrastructure.
- Diesel generators.
- Station earth grid.
- Fire protection systems.
- Environmental protection Oil containment and water treatment systems.

6.4.1. Civil Infrastructure

Assets within the classification of civil infrastructure are generally situated within the boundaries of terminal stations. Civil infrastructure includes buildings, roads, footpaths, surfaced areas, foundations, support structures, signage, internal fencing, cable ducting and trenching, water pipes, sewerage pipes and drains.

Aside from major augmentation and asset replacement projects, additional civil infrastructure assets have been upgraded as a part of targeted programs focussed on managing failure risks.

Civil infrastructure is inspected through routine station inspections and a dedicated civil inspection program. Corrective defects and longer-term improvement plans are identified.

The key strategies are aimed at ensuring the effective, economic, and consistent management of civil infrastructure assets in all terminal stations.

For further information, refer to AMS 10-55 Civil Infrastructure.

6.4.2. Diesel Generators

Diesel generators provide emergency, auxiliary 415 V AC supply at critical locations (terminal stations and communications sites) in the event of total loss of normal auxiliary supplies.

The majority of diesel generators located at terminal stations are provided for black start capability and those at remote communication sites are required to reduce the risks associated with the loss of critical network communication systems.

Issues limiting the functionality of diesel generators include faulty generator controls. Fuel tank replenishment is triggered by reactive maintenance.

In order to mitigate the issues limiting functionality, visual inspections, manual test runs, and operating parameter tests can be performed.

Some installations require fuel spill bunding in order to capture diesel or oil leaks to prevent environmental impacts due to the operation of this equipment.

Key asset management strategies are continuing with current maintenance and operational practices, develop and apply a quantitative condition assessment methodology and economically replace diesel generators based on condition.

For further information, refer to AMS 10-58 Diesel Generators.

6.4.3. Fire Protection System

Fire detection and suppression systems are required to minimise asset damage in case of insulating oil fires, battery fires or control building fires.

All key buildings in terminal stations in the Victorian electricity transmission network are provided with fire detection – zoned VESDA and smoke detection systems with Fire Indication Boards.

All terminal stations have suppression systems, focussed around power transformers and buildings, containing secondary, communications and DC supply equipment. Fire suppression uses systems such as water deluge systems on selected power transformers and in all station locations fire hydrant systems.

There are standard maintenance instructions for all fire protection equipment, testing is performed at specific intervals in accordance with AS 1851¹. Building Emergency exits and lighting is regularly tested in accordance with AS/NZS 2293.2.

Compliance testing and maintenance is performed by professional fire service contractors.

For further information, refer to AMS 10-61 Fire Detection and Suppression.

6.4.4. Station Earth Grid

All Terminal Station switchyards contain underground earth grid to maintain safe EPR, step and touch potentials during fault events. Routine testing of all earth grid using current injection and voltage measurements are undertaken.

For further information, refer to AMS 10-60 Earth Grids

¹ AS1851 Maintenance of fire protection systems and equipment

6.4.5. Oil Contained and Water Treatment Systems

AusNet Services maintains ISO 14001 Environmental Management System (EMS) certification for its electricity transmission assets. There are oil containment and water treatment systems installed in terminal stations to mitigate risks in the event of a spill.

In order to facilitate the ongoing sampling of groundwater, permanent sampling wells have been installed in a number of terminal stations.

The key asset strategies include testing is undertaken during environmental upgrade projects. Periodic sample testing is conducted to assess if oil and water separator systems are operating correctly to comply with required AusNet Services' practices.

7. Strategies

The provision of a superior network requires the management of network assets over their lifecycle. This will be achieved by sound risk management and the continuous improvement practices of our integrated safety, health, environment, quality, and asset management systems.

The following strategies will contribute to the management of network assets over their lifecycle.

- Ongoing commitment to ISO 55001 certification
- Enhanced focus on life cycle management of assets
- Digitisation of all maintenance measurement and inspection condition assessment data
- Explore use of Asset Performance Management systems to facilitate.
 - Development of plant and equipment performance and predictive analytics
 - Facilitate algorithmic condition assessments
- Development in reliability centred maintenance (RCM) modelling to inform maintenance, inspection, and replacement frequency
- Refinement in strategic spares assessment so that appropriate stocks are maintained

8. Schedule of Revisions

ISSUE NUMBER	DATE	DESCRIPTION	AUTHOR	APPROVED BY
5	21/11/2006		G. Lukies D. Postlethwaite	G. Towns
6	17/03/2007		G. Lukies D. Postlethwaite	G. Towns
7	14/08/2013		T. Gowland D. Meade	D. Postlethwaite
8	22/07/2020		A. Dickinson A. Payne-Billard	P Ascione
9	1/10/2025	Latest revision		S Dick

Disclaimer

This document belongs to AusNet Services and may or may not contain all available information on the subject matter this document purports to address.

The information contained in this document is subject to review and AusNet Services may amend this document at any time. Amendments will be indicated in the Amendment Table, but AusNet Services does not undertake to keep this document up to date.

To the maximum extent permitted by law, AusNet Services makes no representation or warranty (express or implied) as to the accuracy, reliability, or completeness of the information contained in this document, or its suitability for any intended purpose. AusNet Services (which, for the purposes of this disclaimer, includes all of its related bodies corporate, its officers, employees, contractors, agents and consultants, and those of its related bodies corporate) shall have no liability for any loss or damage (be it direct or indirect, including liability by reason of negligence or negligent misstatement) for any statements, opinions, information or matter (expressed or implied) arising out of, contained in, or derived from, or for any omissions from, the information in this document.

Contact

This document is the responsibility of the Network Management division of AusNet Services. Please contact the indicated owner of the document with any inquiries.

AusNet

Level 31, 2 Southbank Boulevard

Melbourne Victoria 3006

Ph: (03) 9695 6000

Disclaimer

This template is for generating internal and external document belonging to AusNet and may or may not contain all available information on the subject matter this document purports to address.

The information contained in this document is subject to review and AusNet may amend this document at any time. Amendments will be indicated in the Amendment Table, but AusNet does not undertake to keep this document up to date.

To the maximum extent permitted by law, AusNet makes no representation or warranty (express or implied) as to the accuracy, reliability, or completeness of the information contained in this document, or its suitability for any intended purpose. AusNet (which, for the purposes of this disclaimer, includes all of its related bodies corporate, its officers, employees, contractors, agents and consultants, and those of its related bodies corporate) shall have no liability for any loss or damage (be it direct or indirect, including liability by reason of negligence or negligent misstatement) for any statements, opinions, information or matter (expressed or implied) arising out of, contained in, or derived from, or for any omissions from, the information in this document.

Contact

This document is the responsibility of Transmission - Network Management Division of AusNet. Please contact the indicated owner of the document with any inquiries.

AusNet

Level 31, 2 Southbank Boulevard

Melbourne Victoria 3006

Ph: (03) 9695 6000

Appendices

9. Appendices 1: Condition and **Asset Monitoring Techniques**

Diagnostic Techniques									Fai	Failure Mode	lode									Issues		Effect	Effectiveness		Reliability	oility
						,									spetr		eegrity failures	apatur	ciapili				eteoO	Score	0,1000	
	Does not close	Does not Open	Self Close	Self Open	No current make	No current break	Internal Breakdo	External Breakdo	Slow Open	Bushing Fault	Hydraulic Fault	Air Fault	SF ₆ Leak	Spring Change	Overheating Cor	Secondary		Oil condition	Arc erosion of ∞		Technical	I	огм м	М		МЛО
Traveltime Curve	•	•					\vdash	•	٠		•				•	•	\vdash				Ξ		Н	5		3
Contact Timing		•			•			•	•						•	_					Ξ	_	Н	9		
Dynamic Resistance	•				•	-								Ť	•			•			Ξ	_	Н	8		
Phase Current	•	•	•	•	•		Н		•	•				Ť	\vdash				•		M		٦	5		
SF ₆ Density – Transducers						•				•			•								Ξ		M	4		
Oil DGA – Oil Breakdown						•			•	•					\vdash						Ξ		٦	3		
Ultrasonic Leak											•	•			\vdash						M			5		
Operation Counters			•	•		\dashv	\dashv								\dashv	•	\dashv	•			Σ			4		
Ultrasonic Timing / Vibrator	•	•		-	•		Н	•	•						\vdash	-					Σ		I	7		
Bushing DGA						•	_		_	•								_			Ξ		I	5		
RF Scan						•	•		٠	٠						\dashv	\dashv	\dashv			Σ		H	9		
Motor Current						\dashv	\dashv								•		\dashv	-			_		M	∞		80
Running Time / Pumps / Compression				\forall	\vdash	\vdash	Н		Н			•	\Box	•	Н	\vdash	Н	\square			Ξ			3		
Alarms / Indicators	•	•	•	•	•	•		•	•		•	•	•	•	•			•			Ξ		٦	3		
Contact Wear Inspection				-	•		\dashv		٠						\dashv	\dashv	\dashv	\dashv	•		Ξ			5		
Circuit Supervision / Battery Supply	٠	•	•	•	\dashv	\dashv	\dashv	_	•	_			\dashv		-	_	\dashv	_	_		Ξ		I	3		
Coil Current			•	•		\dashv	\dashv		_					•	•	_	\dashv	•			Σ		M	9		5
Operation Check	•	•	•	•		•	_	•	•		•				_		_	_	•		Ξ		I	9		
Ductoring	•	•		-	•		-		_	٠				-		\dashv	\dashv	•			Ξ		T	5		
Bushing DLA + PD – online and offline						+	-		4	•					\dashv	\dashv	-	_			Ξ		I	5		
IR Test / Megger				-	•		•		_	•					•	_	\dashv	\dashv			Ξ	_	I	2		
Operational Checks	•	•	•	•					•			•		•	•	_					M	_	١ ا	4		
Oil breakdown / particle test + DGA						•			٠	٠						\dashv	\dashv	\dashv								
Themovision / Infrared						•			4	•			\dashv	-	•	\dashv	-	_			Ξ		Σ	4		
CB Management	•	•	•	•	•		_	•	•							\dashv	\dashv	_			Σ		I	9		
Pump Starts Counter (Hydraulics)			\neg	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	_			\neg	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		_	\dashv	_	_		

AusNet

Level 31
2 Southbank Boulevard
Southbank VIC 3006
T+613 9695 6000
F+613 9695 6666
Locked Bag 14051 Melbourne City Mail Centre Melbourne VIC 8001
www.AusNetservices.com.au

Follow us on

@AusNetServices

in @AusNetServices

@AusNet.Services.Energy

