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1 Introduction 

The Quantonomics memo ‘Nonreliability Output Index Weights ABR25’ of 13 June 2025 

updated the output weights for DNSPs and TNSPs, previously last estimated in 2020. The 

previous weights were based on data from 2006-2018.1 The updated output weights followed, 

and were in  response to, an independent review by the Centre for Efficiency and Productivity 

Analysis (CEPA) at the University of Queensland (Peyrache, 2024). They are based on the 

same methodology as used previously by Economic Insights and use data for 2006-2023.  

The updated output weights memo received critical comment from several stakeholders, 

including AusNet, Evoenergy, SA Power Networks (SAPN) and Ausgrid. Favourable 

comments were made by Jemena, Ergon/Energex and TasNetworks. A major concern put 

forward in the submissions is that the updated weights differ materially from those estimated 

in 2020.  

The purpose of this memo is to identify the factors driving the substantial changes in the 

updated set of output weights and to address stakeholders’ comments. Section 2 of this 

supplementary analysis investigates reasons for the substantial changes in the index weights 

between the 2020 and 2025 studies.2 Subsequent sections investigate issues that form the main 

criticisms of stakeholders. Frontier Economics, commissioned by SAPN and Evoenergy, is 

critical, among other things, of the starting values used for parameter estimation in the 

nonlinear least squares (NLS) estimation. This issue is investigated in Section 3.  

SAPN and Frontier Economics are also critical of the reliability of the econometric Leontief 

input demand models which are used to calculate the output weights in the Economic Insights 

method. These issues are addressed in section 4 through an investigation of regression 

residuals and goodness-of-fit statistics. Some of the stakeholders’ methodological criticisms 

and other comments are discussed in Section 5. SAPN suggested that alternative ways of 

averaging the output cost shares across DNSPs should be considered. One alternative method 

is investigated in Section 5. Lastly, section 6 summarises the conclusions. 

2 Results using Different Data Samples 

This section examines the reasons for the changes in estimated output weights compared to 

those published in 2020. Given the methodology for calculating the estimates has been 

maintained, the reasons for the changes may be: 

(a) the inclusion of an additional five years of data (2019-2023) and 

 
1 DNSP output cost weights were first updated in 2018 using data from 2006–2017, after remaining fixed since 

the start of economic benchmarking in 2014. Although the intention was to hold these weights constant for five 
years, a further update was undertaken in 2020 (using 2006–2018 data) to correct an identified time-trend error 

(Economic Insights, 2020: 4). 
2 This analysis of the changes output weights is limited to the Economic Insights method and does not include the 
methods for cross-checking proposed by CEPA and implemented in the June 2025 Quantonomics memo. 
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(b) revisions to data, including 

o a redefinition of opex input to include capitalised corporate overheads (CCO) 

and associated changes to the annual user cost (AUC) of capital inputs 

o changes in the AUC calculations to address issues with inflation. 

The results presented in this section all use the Economic Insights method, applied using 

Stata’s nl command for nonlinear regression, and using starting values of 0.001 for all 

parameters. Unless otherwise stated, the ABR25 dataset is generally used in this section and 

restricted as needed.3 The updated non-reliability output weights in the June 2025 memo are 

based on the ABR25 dataset restricted to the 2006-2023 period. 

2.1 Effects of Changes in Data Definitions 

Table 2.1 presents a comparison of the output cost shares estimated with the 2006-2018 data 

sample using the ABR19 dataset (covering 2006-2018), with which they were originally 

estimated, and using the ABR25 dataset (for years 2006-2018 only). This comparison shows 

the effects of data revisions, such as the revised treatment of CCOs in opex and AUC for 

DNSPs, and the changes in AUC calculation to address issues with inflation.  

The changes in data definitions have had the effects of: 

• Substantially increasing the weight attributed to RMD (by 5.63 percentage points), and 

• Reducing the weights of other outputs, especially Energy Throughput.  

Table 2.1  DNSP Output Cost-Share Weights with Different Datasets (2006-2018) 

  ABR19* ABR25 Diff (p.p.). 

Energy Throughput 8.58% 5.31% -3.27% 

RMD 33.76% 39.39% 5.63% 

Customers 18.52% 17.83% -0.69% 

Circuit Length 39.14% 37.47% -1.67% 

Total 100.00% 100.00% 0.00% 

Note: *From Economic Insights (2020:4) 

2.2 Trends and volatility of Cost Share Weights 

Sequentially adding a single year to the sample produces a series of output cost share estimates 

using samples from 2006-2018 to 2006-2024 using the ABR25 dataset. These are presented in 

Table 2.2.  

 
3 We refer to the dataset used in the 2025 Annual Benchmarking Report (ABR) as ABR25, which covers the period 

2006–2024. Similarly, ABR19 refers to the dataset used in the 2019 ABR, covering 2006–2018. The distinction 

between these datasets is important, as each ABR release incorporates different data revisions. By using the most 
recent dataset (i.e. ABR25), we ensure that all available data corrections and revisions are reflected in the analysis. 
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Table 2.2  DNSP Output Cost-Share Weights with Different Data Samples 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

Energy Throughput 5.31% 4.10% 6.19% 9.35% 8.77% 10.79% 9.96% 

RMD 39.39% 41.89% 44.41% 48.43% 45.67% 47.83% 45.31% 

Customers 17.83% 17.39% 16.92% 15.37% 14.81% 15.23% 18.44% 

Circuit Length 37.47% 36.62% 32.48% 26.85% 30.76% 26.15% 26.29% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant shown. 

Figure 2.1  DNSP Output Cost-Share Weights with Different Data Samples 
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The results shed light on:  

• whether the addition of any specific years results in substantial changes to the 

estimates; 

• trends in output cost share weights over successive samples; and  

• the degree of volatility of output cost share weights. 

Figure 2.1 also presents the patterns of the output share weights as the sample is incrementally 

expanded. 

Table 2.2 and Figure 2.1 show that whilst there is some volatility in the output weights for 

DNSPs when estimated over the different data samples, of more importance are the shifts, 

especially when the sample was expanded to include 2020 and 2021, towards higher cost shares for 

Energy Throughput and RMD and a lower cost share for Circuit Length. From 2006-2021 to 

2006-2024, the cost share estimates have been reasonably stable. 

2.3 Special factors affecting 2020 and 2021 

This section further examines the effects of additional data on output weights. The two main 

questions relate to (a) structural changes in the input demand functions as the sample has 

increased; and (b) the effects of changes in input prices on the cost shares of the different 

inputs, combined with the differences between inputs in the relative importance of the outputs 

as cost drivers. 

To investigate structural changes, Table 2.3 aggregates the estimated coefficients of all the 

opex input demand functions of the 13 DNSPs for each sample period. Specifically, the 

squared coefficients applying to each output and the coefficient on the time trend have each 

been summed across DNSPs, to illustrate, at the industry level, the trends of the coefficients 

between data samples. Similarly, Tables 2.4 to 2.6 show the aggregated coefficients relating to 

the overhead lines (“OH Lines”), underground cables (“UG cables”) and transformers, 

respectively.  

Table 2.3 shows a weakening of the relationship between opex and circuit length in the 2006-

2020 and 2006-2021 data samples. The aggregate squared coefficient applying to circuit length 

falls from 21.04 in the 2006-2019 data sample, to 12.23 in the 2006-2020 and 0.69 in the 2006-

2021. Although there is a partial reversal in the 2006-2022 sample, in the following two data 

samples, the relationship between opex and circuit length is similar to the 2006-2021 sample. 

This change may be related to the efficiencies achieved in opex. Commensurately, there have 

been trends toward greater effects of Energy and RMD. 
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Table 2.3  Aggregate Opex Function Coefficients 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

𝑎̂11
2  (Energy) 27.80 24.86 36.22 49.19 40.27 45.01 54.31 

𝑎̂12
2  (RMD) 334.78 375.09 384.89 445.23 423.41 461.41 405.47 

𝑎̂13
2  (Cust.) 0.47 0.46 0.49 0.51 0.53 0.61 0.61 

𝑎̂14
2  (CircLen.) 23.22 21.04 12.23 0.69 8.94 0.58 0.60 

𝑏̂1 0.18 0.13 0.09 0.06 0.01 0.03 0.04 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Tables 2.4 to 2.6 show the aggregated function for the three capital inputs, and all show some 

trend toward greater importance of RMD. In Table 2.6, Transformer demand is also more 

strongly affected by Energy Throughput in the 2006-2021 to 2006-2023 data samples, but this 

effect is no longer present in the 2006-2024 sample. Aside from these effects, the capital inputs 

do not appear to show major structural shifts and differ in this regard from the opex input 

demand function. 

Table 2.4  Aggregate OH Lines Function Coefficients 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

𝑎̂21
2  (Energy) 10.88 9.38 11.38 9.56 11.28 10.40 9.61 

𝑎̂22
2  (RMD) 167.25 154.68 127.02 177.82 203.96 227.20 229.64 

𝑎̂23
2  (Cust.) 0.57 0.57 0.58 0.56 0.57 0.56 0.55 

𝑎̂24
2  (CircLen.) 59.66 61.06 65.07 54.97 51.15 50.18 49.75 

𝑏̂2 -0.03 -0.05 -0.06 -0.04 -0.04 -0.04 -0.04 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Table 2.5  Aggregate UG Cables Function Coefficients 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

𝑎̂31
2  (Energy) 0.19 0.00 0.17 0.27 0.62 0.53 1.06 

𝑎̂32
2  (RMD) 22.91 23.45 25.65 26.55 26.58 27.43 36.55 

𝑎̂33
2  (Cust.) 0.08 0.09 0.07 0.07 0.07 0.07 0.06 

𝑎̂34
2  (CircLen.) 9.39 9.51 9.11 8.86 8.71 9.05 7.39 

𝑏̂3 0.45 0.44 0.44 0.43 0.42 0.42 0.42 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant shown. 

Table 2.6  Aggregate Transformer Function Coefficients 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

𝑎̂41
2  (Energy) 1.27 1.11 0.77 2.15 2.00 1.69 0.47 

𝑎̂42
2  (RMD) 10.59 12.45 14.49 14.57 16.28 16.79 16.14 

𝑎̂43
2  (Cust.) 0.06 0.06 0.05 0.04 0.03 0.04 0.06 

𝑎̂44
2  (CircLen.) 2.29 2.24 2.50 2.31 2.31 2.44 2.29 

𝑏̂4 0.24 0.23 0.21 0.21 0.20 0.18 0.17 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 
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Another data change relevant to 2020 and 2021 is the substantial decrease in capital input 

prices in those two years, which increases the relative importance of the opex input in total 

cost. Table 2.7 shows the trends in the relative importance of each input in total cost between 

the data samples. The cost share of opex began to increase in the 2006-2020 data sample and 

increased further in each sample up to 2006-2023.4 Among the capital inputs, UG Cables had 

the largest decline. 

Table 2.8 shows the shares of opex cost estimated to be attributable to each output in each 

data sample. Tables 2.9 to 2.11 show the shares of each capital input cost estimated to be 

attributable to each output in each data sample. Table 2.8 shows the majority of Opex is driven 

by RMD, so the increased cost share of opex caused RMD to increase in overall importance. 

Table 2.8 also highlights the effects of the structural changes in the opex input demand 

function previously noted. A substantial decline in the proportion of Opex attributed to the 

circuit length output, an increase in the proportion attributed to energy, and an increase in the 

proportion of cost attributed to RMD between the 2006-2018 and 2006-2023 samples 

(although this decreased in 2006-2024). 

Table 2.7  Input Total Cost Shares (%) 

 Data sample Opex OH Lines UG Cables Transformers Total 

2006-2018 41.9% 18.5% 13.0% 26.6% 100.0% 

2006-2019 41.9% 18.5% 13.0% 26.6% 100.0% 

2006-2020 42.0% 18.5% 12.9% 26.5% 100.0% 

2006-2021 42.3% 18.4% 12.9% 26.5% 100.0% 

2006-2022 42.4% 18.4% 12.8% 26.4% 100.0% 

2006-2023 42.5% 18.4% 12.7% 26.4% 100.0% 

2006-2024 42.3% 18.5% 12.7% 26.5% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Table 2.8  Opex Cost: Per cent Attributable to Outputs  

 Data sample Energy RMD Cust CircLen Total 

2006-2018 8.4% 56.9% 14.9% 19.8% 100.0% 

2006-2019 7.0% 60.5% 14.8% 17.7% 100.0% 

2006-2020 11.3% 63.9% 14.9% 9.9% 100.0% 

2006-2021 11.7% 70.6% 15.2% 2.5% 100.0% 

2006-2022 10.4% 61.1% 15.4% 13.1% 100.0% 

2006-2023 15.9% 65.6% 16.4% 2.1% 100.0% 

2006-2024 21.0% 58.9% 16.4% 3.7% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Tables 2.9 and 2.10 show that the major cost driver of OH Lines and UG Cables is circuit 

length, which is logical given that extensions to the network will need additional OH Line and 

 
4 Table 2.7 shows incremental impact of adding one more year on the input cost shares for the entire sample period 
examined. The implied change in the input cost share for the additional one year is more significant. 
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UG Cable inputs. However, with additional data, circuit length has decreased in relative 

importance as a cost driver for these two inputs. This may be due to an increasing proportion 

of the growth in OH Lines and UG Cables coming from line/cable capacity re-rating.  

Table 2.9  OH Lines Cost: Percent Attributable to Outputs  

 Data sample Energy RMD Cust CircLen Total 

2006-2018 2.8% 12.9% 10.9% 73.4% 100.0% 

2006-2019 2.2% 12.1% 10.8% 74.9% 100.0% 

2006-2020 2.8% 11.5% 11.0% 74.7% 100.0% 

2006-2021 2.2% 15.3% 11.0% 71.5% 100.0% 

2006-2022 2.7% 16.9% 11.0% 69.4% 100.0% 

2006-2023 2.4% 17.7% 10.7% 69.2% 100.0% 

2006-2024 2.2% 17.9% 10.9% 69.0% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Table 2.10  UG Cables Cost: Percent Attributable to Outputs  

 Data sample Energy RMD Cust CircLen Total 

2006-2018 0.9% 28.3% 10.0% 60.7% 100.0% 

2006-2019 0.0% 29.1% 10.2% 60.7% 100.0% 

2006-2020 0.8% 32.8% 8.9% 57.6% 100.0% 

2006-2021 1.2% 34.5% 13.3% 51.0% 100.0% 

2006-2022 2.9% 34.2% 15.3% 47.5% 100.0% 

2006-2023 2.6% 34.8% 15.1% 47.5% 100.0% 

2006-2024 2.9% 41.6% 15.0% 40.5% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

Table 2.11  Transformers Cost: Percent Attributable to Outputs  

 Data sample Energy RMD Cust CircLen Total 

2006-2018 4.3% 35.4% 31.2% 29.0% 100.0% 

2006-2019 2.8% 39.8% 29.5% 27.8% 100.0% 

2006-2020 3.2% 42.4% 28.3% 26.2% 100.0% 

2006-2021 14.5% 42.9% 19.7% 22.9% 100.0% 

2006-2022 13.2% 46.5% 16.3% 24.0% 100.0% 

2006-2023 12.5% 47.1% 16.8% 23.7% 100.0% 

2006-2024 1.2% 44.5% 28.7% 25.6% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown. 

In the 2006-2018 sample, Transformer costs were attributable in roughly equal proportions to 

RMD, Customer Numbers and Circuit Length. However, in 2006-2023, a much larger 

proportion of Transformer costs was attributable to RMD and Energy, and smaller 

proportions were attributable to Customer numbers and Circuit Length. These changes have 

been partly reversed in the 2006-2024 data sample, especially the cost share attributable to 
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Energy. The 2006-2024 data sample appears to produce a more consistent attribution of 

Transformer costs than the 2006-2023 sample. 

2.4 Summary observations 

Table 2.12 summarises the effects of the data revisions and the additional data, comparing the 

2006-2018 dataset with the 2006-2023 dataset. The second column reproduces the last column 

of Table 2.1. The third column represents the estimated effect of additional data. It is obtained 

by subtracting the 2nd column of Table 2.2 (the output cost shares using the 2006-2018 sample) 

from the 2nd-last column of Table 2.2 (the output cost shares estimated using the 2006-2023 

sample. The last column of Table 2.12 shows the combined effects. This Table shows: 

• The large increase in the cost share of RMD is a combination of increases due to data 

revisions and to additional data, both considerably raising its weight; 

• The modest increase in the cost share of Energy Throughput is due to largely offsetting 

effects from data revisions and additional data; 

• The large decrease in the cost share of Circuit Length is mostly due to the additional 

data, which has tended to reduce the estimated influence of this output on input 

demands. 

Table 2.12  Decomposition of DNSP Output Cost-Share Changes between 2006-2018 and 2006-

2023* 

  Diff. due to            

data revisions 

Diff. due to     

additional data 

Total            

Change 

Energy Throughput -3.27% 5.48% 2.21% 

RMD 5.63% 8.44% 14.07% 

Customers -0.69% -2.60% -3.29% 

Circuit Length -1.67% -11.32% -12.99% 

Total 0.00% 0.00% 0.00% 

Note: * Using ABR25 dataset. 

The effects of additional data were mostly associated with the addition of 2020 and 2021 data. 

They appear to be driven by the following main factors: 

• The weakening of the relationship between opex and circuit length in the 2006-2020 

and 2006-2021 data samples, perhaps related to the efficiencies that have been achieved 

in opex. 

• A relatively steady trend towards reduced importance of circuit length as a driver of 

OH Lines and UG Cables costs, perhaps due to changing (increasing) line capacities. 

• A relatively steady trend toward greater attribution of costs to RMD for all inputs. 

• A large reduction in the prices of capital inputs in 2020 and 2021, which increased the 

share of opex in total costs. Since a relatively high share of Opex is attributed to RMD 
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and a relatively low share is attributed to circuit length, this accentuated the shift of 

overall cost share away from Circuit Length towards RMD. 

3 Alternative Starting Values 

3.1 Frontier Economics’ Analysis 

Evoenergy’s submission states: 

Frontier Economics has identified that Quantonomics did not estimate the Leontief model 

correctly in six instances. Quantonomics uses the nl package in Stata to estimate each 

model. … Using a different approach (maximum likelihood estimation), Frontier 

Economics identified six models that had materially different coefficient estimates to the 

results presented by Quantonomics. When those coefficient estimates were fed into the nl 

Stata package as starting values, the solver identified a different set of estimated 

coefficients than results presented by Quantonomics, with an improved model fit (i.e., 

lower sum of squared residuals). This means that the Quantonomics estimates were not 

valid estimates as they did not minimise the sum of squared residuals. (Evoenergy, 2025) 

The Quantonomics output weights memo relied only on the method used by Economic 

Insights and the key methods proposed by CEPA. Frontier Economics’ approach of using 

maximum likelihood (ML) estimation to obtain alternative starting values for applying the 

Economic Insights method is of interest as a potential improvement (albeit adding an extra 

step in the process of the NLS estimation, to first derive the alternative starting values). 

It can be taken as given that a method employed for some DNSPs must also be used for all 

DNSPs. It would not be satisfactory to use different methods for different DNSPs in some ad 

hoc manner. A method that cannot be consistently applied to reliably produce results for all 

DNSPs cannot be used to produce a reliable set of output weights, because some of the 

constituent models are unreliable. Furthermore, since a consistent method is needed to 

produce the average output weights, a method that performs better for 6 of the 52 input 

demand models does not necessarily consistently produce superior results over all models and 

is therefore not necessarily a better method or even a feasible method. 

In this section, we estimate the input demand models by first estimating the models using 

Stata’s ml functionality, which allows the user to specify the log likelihood function to be 

minimised. The convergence properties of this estimator are discussed. The resulting 

estimated coefficients are then used as starting values in the nonlinear least squares (NLS) 

estimation of input demand functions. For each regression (for each DNSP and input), the 

resulting sum of squared residuals is compared to those obtained using the Economic Insights 

method. 
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3.1.1 Convergence of ML models 

Table 3.1 shows the convergence results of ML models using the 2006-2023 and 2006-2024 

samples. For these ML models, we use the standard 0.001 as starting values, in line with 

Frontier Economics’ approach. There are 52 models to be estimated in total. In both samples, 

two of the ML models failed to converge. This means that the method of using ML estimates 

to obtain starting values cannot be applied consistently because in some cases they do not 

converge. In the cases where the ML models did not successfully converge, we have used 

parameter starting values of 0.001 in a single step for the NLS estimation.5  

Table 3.1   Convergence of ML Models 

Sample period Models failing to achieve convergence 

2006-2023 
• ESS UG/Cables 

• ESS Transformers 

2006-2024 
• UED UG/Cables 

• UED Transformers 

3.1.2 Results of Using ML Estimates as Starting Values 

The purpose is to test whether the root mean square error (RMSE) of each input demand 

model is lower (or no higher) when the ML estimates are used as starting values than when 

the starting values used by Economic Insights are used.6 Tables 3.2 and 3.3 present 

comparisons of the RMSEs for each model using the standard starting values compared to the 

RMSEs obtained when the ML estimates are used as starting values. Table 3.2 uses the 2006-

2024 sample period, and Table 3.3 uses the 2006-2023 period. In both sample periods:7 

• 15 of the models have a lower RMSE when the ML starting values are used  

• 2 of the models have a higher RMSE when the ML starting values are used. In the 

2006-2024 sample, AGD UG cables and  TND transformers. In the 2006-2024 sample, 

PCR real opex and TND transformers.  

• For the remaining 35 models, the RMSE is unchanged. 

On balance, the use of the ML starting values tends to produce some improvement in lowering 

the RMSE. On average over both sample periods (ie, 104 models), the percentage reduction in 

RMSE is 3.3 per cent. 

 
5 For the output-related parameters 𝑎𝑖𝑗 (for input demand i and output j), which are squared in the Economic 

Insights specification, we have used the absolute values of the first-round estimates as starting values for the 
second-round estimation. 
6 Comparing RMSE values is one method of comparing the goodness-of-fit of econometric specifications (Baum, 
2006: 79). Unlike R², the RMSE is not bounded between 0 and 1 and expresses the average distance between 

predicted and actual values in absolute terms, whereas R² indicates the proportion of variance in the dependent 

variable explained by the model. 
7 A threshold of 1 per cent is used when we refer to an RMSE being higher or lower than another. 
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Table 3.2   RMSE by Input Demand Model, 2006-2024 data sample 

  Standard starting Values   ML starting values 

DNSP x1 x2 x3 x4   x1 x2 x3 x4 

1. EVO 8,986 2,209 747 39  8,811 2,209 720 39 

2. AGD 58,507 6,948 4,255 1,528  58,507 6,514 4,255 1,528 

3. CIT 4,198 140 239 67  3,990 140 239 67 

4. END 17,649 6,201 1,788 402  17,649 6,201 1,788 402 

5. ENX 20,104 3,132 4,196 679  20,104 3,132 4,196 655 

6. ERG 31,743 13,280 805 426  31,743 13,280 781 413 

7. ESS 49,316 8,120 1,876 743  49,316 8,120 1,815 686 

8. JEN 8,777 1,530 293 106  8,337 870 293 106 

9. PCR 10,993 1,314 648 86  11,301 1,314 648 83 

10. SAP 15,068 1,651 695 288  14,941 1,651 695 288 

11. AND 13,479 2,625 389 178  13,479 2,625 389 173 

12. TND 7,740 662 160 84  7,081 662 160 86 

13. UED 8,262 2,122 134 104   8,262 2,054 134 104 

Table 3.3   RMSE by Input Demand Model, 2006-2023 data sample 

  Standard starting Values   ML starting values 

DNSP x1 x2 x3 x4   x1 x2 x3 x4 

1. EVO 9,075 2,356 341 40  8,979 2,274 341 40 

2. AGD 62,310 6,708 3,971 1,346  60,264 6,708 4,066 1,346 

3. CIT 4,101 140 246 68  4,101 140 229 68 

4. END 18,853 6,400 1,653 402  18,192 6,400 1,653 402 

5. ENX 19,999 5,992 3,150 518  19,999 3,108 3,150 518 

6. ERG 25,070 43,575 781 414  25,070 13,632 781 414 

7. ESS 49,582 8,120 1,874 674  49,582 8,120 1,874 674 

8. JEN 8,362 859 253 89  8,362 859 244 86 

9. PCR 11,802 1,357 716 83  11,802 1,357 665 83 

10. SAP 15,412 1,708 729 308  15,057 1,708 729 294 

11. AND 14,222 24,689 345 175  13,770 2,349 345 175 

12. TND 7,300 684 165 85  7,300 684 165 88 

13. UED 8,395 2,172 138 107   8,395 2,098 138 107 

Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023. 

3.1.3 Implications for Output Cost Shares 

In Table 3.4, the output cost shares estimated using the models that use the ML starting values 

are compared to those estimated using the standard starting values. These comparisons show 

that, compared to the standard starting values, the ML starting values produce: 

• lower cost shares for Energy Throughput, particularly in the 2006-2023 data sample, 

with a much smaller effect in the 2006-2024 sample; 

• higher cost shares for RMD by approximately 4 percentage points in both samples; 

• the customer numbers cost share is similar in the 2006-2023 sample, but lower in the 

2006-2024 sample; and 



 

 

 
13 

Output Index Weights 

 

• cost shares for Circuit Length are similar in both sample periods. 

Table 3.4   Comparison of Output Cost Shares with ML Starting Values 

  Standard starting values   ML starting values 

  2006-2023 2006-2024   2006-2023 2006-2024 

Energy Throughput 10.79% 9.96% 
 

6.78% 8.08% 

RMD 47.83% 45.31% 
 

52.06% 49.11% 

Customers 15.23% 18.44%  15.12% 15.33% 

Circuit Length 26.15% 26.29% 
 

26.04% 27.48% 

Total 100.00% 100.00%   100.00% 100.00% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown. 

As shown in Table 2.12, the main changes from the weights estimated by Economic Insights 

in 2020 are the large increase in the cost share of RMD and the decrease in the cost share of 

Circuit Length. Table 3.5 shows that Frontier Economics’ method of using ML starting values 

does not substantially alter the main changes in weights. The changes from the previous 

weights remains quite significant and move broadly in the same direction as those observed 

with our original estimates (the only exception being energy throughput). 

Table 3.5  Difference from Previous Weights 

 Standard starting values  ML starting values 

  2006-2023 2006-2024  2006-2023 2006-2024 

Energy Throughput 2.21% 1.38%  -1.80% -0.50% 

RMD 14.07% 11.55%  18.30% 15.35% 

Customers -3.29% -0.08%  -3.40% -3.19% 

Circuit Length -12.99% -12.85%  -13.10% -11.66% 

Total 0.00% 0.00%  0.00% 0.00% 

3.2 Preceding Sample Estimates as Starting Values 

Another approach to starting values is to use previously estimated parameters as starting 

values. This is the method used by CEPA. This method can be extended to sequentially 

estimate output weights using parameters previously estimated with the previous, smaller data 

sample.8 Table 3.6 presents output cost share results obtained using each sample period from 

2006-2018 to 2006-2024. Figure 3.1 depicts the patterns of output weights obtained. An 

important feature is the large shifts to greater RMD weight and smaller Circuit Length weight. 

 
8 For the 2006-2018 data sample, the Economic Insights parameter estimates are used as starting values. The 

models applied to the 2006-2019 dataset use the coefficients estimated with the 2006-2018 data, and so on, by 

adding one year at a time, and using the estimated coefficients of the preceding sample as starting values for the 
next (more specifically, the absolute values of the squared parameters).  
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Table 3.6  DNSP Output Cost-Share Weights with Different Data Samples—Starting Values from Preceding Results 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

Energy Throughput 8.44% 4.39% 4.05% 5.05% 4.22% 3.68% 5.25% 

RMD 38.89% 41.05% 44.10% 47.61% 48.50% 48.39% 46.18% 

Customers 17.34% 17.06% 16.99% 16.77% 17.21% 18.67% 19.56% 

Circuit Length 35.33% 37.50% 34.85% 30.57% 30.07% 29.26% 29.02% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown. 

Figure 3.1  DNSP Output Cost-Share Weights with Different Data Samples—Starting Values from Preceding Results 
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Tables 3.7 and 3.8 present comparisons of the RMSEs for each model using the standard 

starting values compared to the RMSEs obtained when the preceding estimates are used as 

starting values. Table 3.7 uses the 2006-2024 sample period, and Table 3.8 uses the 2006-2023 

period. 

The results in Table 3.6 for the 2006-2023 and 2006-2024 data samples can be compared to 

those using standard starting values. This comparison is shown in Table 3.9. 

Table 3.7   RMSE by Input Demand Model, 2006-2024 data sample 

  Standard starting values   Preceding results as starting values 

DNSP x1 x2 x3 x4   x1 x2 x3 x4 

1. EVO 8,986 2,209 747 39  9,586 2,209 698 39 

2. AGD 58,507 6,948 4,255 1,528  58,507 6,514 4,228 1,528 

3. CIT 4,198 140 239 67  3,990 140 239 67 

4. END 17,649 6,201 1,788 402  17,649 6,201 2,413 402 

5. ENX 20,104 3,132 4,196 679  20,104 3,308 4,248 655 

6. ERG 31,743 13,280 805 426  31,842 14,372 781 413 

7. ESS 49,316 8,120 1,876 743  49,316 8,120 1,815 675 

8. JEN 8,777 1,530 293 106  8,636 970 293 103 

9. PCR 10,993 1,314 648 86  11,672 1,314 648 86 

10. SAP 15,068 1,651 695 288  14,941 1,651 720 288 

11. AND 13,479 2,625 389 178  13,479 2,625 401 173 

12. TND 7,740 662 160 84  7,360 662 160 84 

13. UED 8,262 2,122 134 104   8,262 2,054 145 104 

Table 3.8   RMSE by Input Demand Model, 2006-2023 data sample 

  Standard starting values   Preceding results as starting values 

DNSP x1 x2 x3 x4   x1 x2 x3 x4 

1. EVO 9,075 2,356 341 40  9,693 2,416 341 42 

2. AGD 62,310 6,708 3,971 1,346  60,264 6,708 3,971 1,346 

3. CIT 4,101 140 246 68  4,101 140 229 68 

4. END 18,853 6,400 1,653 402  18,192 6,400 2,113 402 

5. ENX 19,999 5,992 3,150 518  19,999 3,108 3,150 518 

6. ERG 25,070 43,575 781 414  25,070 14,795 781 414 

7. ESS 49,582 8,120 1,874 674  49,582 8,120 1,874 717 

8. JEN 8,362 859 253 89  8,732 938 254 86 

9. PCR 11,802 1,357 716 83  11,802 1,357 665 86 

10. SAP 15,412 1,708 729 308  15,057 1,708 729 294 

11. AND 14,222 24,689 345 175  13,770 2,349 339 175 

12. TND 7,300 684 165 85  7,585 684 165 85 

13. UED 8,395 2,172 138 107   8,395 2,098 145 107 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown. 
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Table 3.9   Comparison of Output Cost Shares with Preceding Results as Starting Values 

  Standard starting values   Preceding results as starting values 

  2006-2023 2006-2024   2006-2023 2006-2024 

Energy Throughput 10.79% 9.96%  
3.68% 5.25% 

RMD 47.83% 45.31% 
 

48.39% 46.18% 

Customers 15.23% 18.44%  
18.67% 19.56% 

Circuit Length 26.15% 26.29%  
29.26% 29.02% 

Total 100.00% 100.00%   100.00% 100.00% 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown. 

The comparisons in Table 3.9 show that the method of using preceding results as starting 

values produces substantially different results, with a lower weight for Energy Throughput 

and higher weights for the other outputs, especially Circuit Length.  

The comparisons in Tables 3.7 and 3.8 show that: 

• In the 2006-2023 sample, 13 of the models have a lower RMSE, and 10 have a higher 

RMSE, than when the standard starting values are used;  

• In the 2006-2024 sample, 14 of the models have a lower RMSE, and 9 have a higher 

RMSE, than when the standard starting values are used.  

The use of the preceding estimates as starting values lowers the average RMSE compared to 

the standard starting values. On average over both the 2006-2023 sample and the 2006-2024 

samples by 1.8 per cent in sample. When compared to the models using the ML starting 

values, those estimated using preceding estimates as starting values produce an average RMSE 

(including averaging over both sample periods) that is 1.7 per cent higher. 

Hence, on the basis of average RMSE, the approach of using previously estimated parameters 

as starting values is arguably superior to the standard starting values and slightly inferior to 

the use of ML results as starting values. Concerning Frontier Economics’ criticism quoted at 

the beginning of this section, relating to “valid estimates”, it is interesting to observe that when 

the RMSEs of models using preceding results starting values (shown in Tables 3.7 and 3.8) are 

compared to those using ML estimates as starting values (shown in Tables 3.2 and 3.3):  

• In the 2006-2023 sample, 3 of the models that use preceding results starting values 

have a lower RMSE, and 12 have a higher RMSE, than when the ML starting values 

are used. 

• In the 2006-2024 sample, 4 of the models that use preceding results starting values 

have a lower RMSE, and 13 have a higher RMSE, than when the ML starting values 

are used.  

Thus, the use of ML starting values does not yield the lowest RMSE for all models. In our 

view, the average RMSE for all 52 models is a better indicator of the effectiveness of a method 

of choosing starting values than selecting a small number of models to highlight. 
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3.3 Conclusions 

This section has evaluated Frontier Economics’ approach of using parameters estimated using 

Stata’s ml routines as starting values for the NLS estimation of the input demand functions 

used to calculate output cost shares. The following findings are largely invariant to whether 

the 2006-2023 or the 2006-2024 data samples are used: 

• Out of the 52 ML models estimated (for each sample), 2 did not converge. We have 

used the standard starting values in place of the unreliable ML estimates for those 

models. 

• When the ML-estimated parameters are used as starting values in NLS estimation, 

15 of the 52 models have a lower RMSE than when standard starting values are used. 

However, 2 models have a higher RMSE. Thus, the RMSE is worse for some models, 

although on average (using both sample periods), the RMSE is improved by 3.3 per 

cent.  

• When previously estimated parameters are used as starting values in NLS estimation, 

about 12–13 of the 52 models have a higher RMSE than when ML-estimated starting 

values are used. However, 3–4 models have a lower RMSE than when ML-estimated 

starting values are used. Thus, several of the models estimated with ML-estimated 

starting values are worse than models where previously estimated parameters are 

used as starting values. However, on average, the models using ML-estimated starting 

values have slightly lower RMSE than models using previously estimated parameters 

as starting values (by 1.7 per cent on average over both sample periods). 

Frontier Economics claimed that “Quantonomics failed to estimate the Leontief model 

correctly in six instances … the real opex models for Evoenergy and SA Power Networks, the 

overhead lines model for Ergon Energy and AusNet Distribution, the underground cables 

model for Ausgrid and the transformers model for TasNetworks Distribution” (SA Power 

Networks, 2025: 10). This criticism is based on the observation that, when starting values 

obtained from ML estimates are used, Frontier Economics found 6 models with a lower 

RMSE than the equivalent models that used the standard starting values. However, as we have 

seen: 

• Some of the ML routines for estimating starting values failed to converge. And when 

the ML estimates are used as starting values for NLS models, 2 of the models produced 

a higher RMSE than the equivalent models as starting values. These issues were not 

noted in the submissions. 

• When the preceding estimated coefficients are used as starting values, about 3 models 

are found with lower RMSE than the equivalent models that used the ML estimates as 

starting values. Hence, none of the three methods examined produces the lowest 

RMSE in all 52 input demand models. 
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These results highlight CEPA’s point that NLS estimation produces parameters that yield a 

local minimum for the sum of squared residuals, but does not reliably find a global minimum 

(Peyrache, 2024:14). 

A useful single metric to use when comparing the three methods considered here for setting 

starting values is the average RMSE across all 52 input demand models. By this metric, the 

models that use ML-estimated starting values proposed by Frontier Economics perform the 

best of the methods tested.  

As previously stated, the use of different methods of establishing starting values for different 

DNSPs and inputs would be ad hoc. The method of establishing starting values should be 

consistently applied to the models for all DNSPs and inputs. We have found that the procedure 

used by Frontier Economics of first estimating parameters using Stata’s ML routine, and then 

using these as starting values in the NLS estimation produced better results than the standard 

starting values we used, which were previously used by Economic Insights. If the ML 

estimation routine fails to converge, the standard starting values (0.001) can be used as a 

fallback assumption.9 We recommend that this approach be considered as a potential 

improvement over the use of the standard starting values in future updates of the output 

weights. 

Frontier Economics also criticises the fact that many of the individual coefficients are zero, or 

very close to zero, in the four input demand functions estimated for each DNSP. The reason 

why they consider this to be a deficiency is not explained. The overall aim is to obtain the 

average effect of output on costs for the industry. The purpose and advantages of estimating 

the models separately for individual DNSPs were explained by CEPA (2024: 14), namely that 

it allows a highly flexible estimation procedure. We consider these criticisms by Frontier 

Economics to be mistaken.  

Further, in its Stata program, Frontier Economics describes output coefficients that are 

nonnegative but close to zero as monotonicity violations. This is a mistake. Monotonicity 

requires only that the conditional input demand is nondecreasing in any output (Coelli et al., 

2005: 25–26). Hence, the output coefficients of the input demands must be nonnegative. An 

output coefficient equal to or greater than zero is not a monotonicity violation. The squaring 

of the output parameters ensures that there can be no monotonicity violations in these models. 

4 Residuals Analysis and Model Fit  

This section examines the residuals from the input demand models for each DNSP to identify 

any estimation issues or misspecifications. The focus is primarily on the output weights 

estimated with the 2006-2023 data used in the benchmarking report 2025, although we also 

examine the residuals when Frontier Economics’ suggested use of alternative starting values, 

 
9 We used the absolute values of the squared parameters as starting values for the second round, although we note 

that Frontier Economics generally used the estimated values (retaining negative values for starting values where 
applicable) when examining the six instances with mis-estimation using the standard starting values. 
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derived from maximum likelihood estimation, is adopted. We also examine the residuals 

when the 2006-2024 data sample is used. 

Appendix A presents the fitted values against the actual values for each of the 52 Leontief 

estimations, covering the 2006–2023 and 2006–2024 periods and using the ABR25 dataset. 

4.1 Identifying Possible Outliers & Residuals Patterns 

Outliers can be defined as observations with unusually large residuals, indicating that the 

dependent variable is not well explained by the predictor variables. To detect outliers, the 

residuals for each DNSP are first standardised. For each residual 𝑒𝑖 (for observation i) the 

standardised residual is calculated as: 𝑧𝑖 =
𝑒𝑖−𝑒𝑔̅̅̅̅

𝑠𝑔
 , where 𝑒𝑔̅ is the mean residual for DNSP 𝑔 

and 𝑠𝑔 is the standard deviation of residuals for DNSP 𝑔. This scales residuals relative to the 

distribution of residuals within each DNSP. Any observation with |𝑧𝑖| > 3  can be considered 

a potential outlier.  

Using this criterion, no observations were identified as potential outliers for any DNSP. 

Boxplots are useful for inspecting the distributions of residuals and outliers. A boxplot shows 

the median (line inside the box), the interquartile range or IQR (the box from the 25th to the 

75th percentile), and “whiskers” that extend to the most extreme values within 1.5×IQR from 

the box. Points plotted beyond the whiskers are flagged as outliers under the standard 1.5×IQR 

rule, and points beyond 3×IQR are typically considered extreme outliers.  

Figure 4.1 presents boxplots of the residuals for each DNSP, across the four inputs: opex, 

overhead lines, underground cables and transformers, for the 2006-23 period. Note that the 

vertical axis scale differs across the charts. In practice, the boxplots can be interpreted as 

follows: 

• In a well-specified model, residuals should be clustered around zero.10 The mean 

should be close to zero, indicating that, on average, the model’s predictions are 

accurate. A median (the line inside the box) that sits noticeably above or below zero 

suggests systematic over- or under-prediction for that DNSP. 

• Very long whiskers or a large number of outlier points suggest heavy-tailed 

distributions or the presence of potential outliers.

 
10 Because the nonlinear input demand functions do not have intercepts, the residuals need not be centred precisely 
at zero. 
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Figure 4.1: Residual Distributions by DNSP (2006-2023) 

Real Opex OH Lines 

  

UG Cables Transformers 

  
Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023. 
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From Figure 4.1, we observe that: 

• The residuals for most DNSPs are indeed clustered around zero. However, some 

notable exceptions arise that may indicate specification issues. The most prominent 

case is for ERG and AND in OH lines, where all residuals fall well below zero, 

signalling systematic under-prediction. 

• AGD also displays a much wider spread of residuals across all inputs except OH lines. 

Broader distributions are likewise observed for ESS and ERG in real opex and 

transformers, and for ENX in UG cables. 

• Residuals for real opex exhibit the widest distribution across all DNSPs, followed by 

OH lines. In contrast, UG cables and transformers show residuals that are more tightly 

clustered around zero for all DNSPs, suggesting these outputs are generally better 

explained by the model. 

4.2 Residuals in the 2006-2024 dataset 

Figure 4.2 presents the boxplots for the 2006–2024 sample. The issue observed in the ERG 

and AND OH lines models, where residuals were not centred around zero, disappears when 

the extended dataset is used. However, as discussed in Section 2.2, the estimated output 

weights remain very similar across the two samples. This suggests that the residuals centring 

problem in the two models does not materially affect the reliability of the estimated output 

weights, although we note the improvement with the 2006–2024 sample. 

4.3 Goodness-of-Fit 

R² values of regressions are shown in Table 4.1. The first panel (EI 2006-2018) presents R² 

values reported by Economic Insights in 2020. The second panel (2006–2023) shows R² values 

from the regressions used to update the output weights, and on which the index analysis in 

the benchmarking report is based. The third panel (2006–2024) are the results when using the 

full ABR25 dataset. Note that all these estimations use the same set of coefficient starting 

values (0.001). The main observations on Table 4.1 are: 

• EI 2006–2018: The average R² across the four inputs is slightly higher than in the 2006–

2023 dataset. All R2 values are positive, although a few are quite small, especially for 

Opex and OH lines. 

• 2006–2023: The R² values are mostly positive, with the exceptions of the OH lines input 

for ERG and AND, which are negative. This reinforces the problematic nature of those 

two models as previously observed. 

2006–2024: The average R² values are similar to those using the 2006-2023 sample, but 

the issue with the OH Lines input for ERG and AND has disappeared, again showing 

that the inclusion of 2024 data resolved the computational problems with those 

models. The R² for EVO in the opex estimation is effectively zero but negative. 
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Figure 4.2: Residual Distributions by DNSP (2006-2024) 

Real Opex OH Lines 

  

UG Cables Transformers 
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Table 4.1   R2 Values  Comparisons  

 EI 2006-2018*  2006-2023**  2006-2024 

 Opex OH Lines UG Cables Transfor.  Opex OH Lines UG Cables Transfor.  Opex OH Lines UG Cables Transfor. 

EVO 0.143 0.925 0.975 0.990  0.018 0.853 0.962 0.985  -0.003 0.886 0.997 0.988 

AGD 0.256 0.439 0.891 0.928  0.460 0.316 0.827 0.800  0.508 0.266 0.806 0.726 

CIT 0.539 0.461 0.982 0.980  0.530 0.068 1.000 0.984  0.528 0.034 0.965 0.986 

END 0.313 0.090 0.984 0.978  0.141 0.429 0.984 0.971  0.182 0.502 0.982 0.972 

ENX 0.674 0.958 0.989 0.995  0.539 0.886 0.942 0.975  0.613 0.966 0.904 0.961 

ERG 0.132 0.460 0.980 0.976  0.461 -4.778 0.947 0.957  0.189 0.373 0.949 0.959 

ESS 0.088 0.962 0.865 0.985  0.127 0.940 0.800 0.853  0.083 0.940 0.825 0.850 

JEN 0.738 0.711 0.989 0.976  0.162 0.845 0.993 0.980  0.079 0.572 0.992 0.973 

PCR 0.408 0.682 0.949 0.997  0.488 0.852 0.975 0.997  0.561 0.873 0.981 0.997 

SAP 0.816 0.713 0.990 0.975  0.689 0.693 0.967 0.962  0.731 0.727 0.972 0.966 

AND 0.797 0.877 0.996 0.986  0.540 -24.129 0.997 0.971  0.582 0.677 0.996 0.974 

TND 0.249 0.944 0.976 0.974  0.231 0.970 0.977 0.969  0.150 0.974 0.980 0.971 

UED 0.332 0.871 0.993 0.986  0.232 0.847 0.994 0.989  0.212 0.851 0.995 0.990 

AVG 0.422 0.699 0.966 0.979  0.355 0.700*** 0.951 0.953   0.340 0.665 0.949 0.947 

Note: *From Economic Insights (2020b: Appendix A). ** Using the ABR25 dataset, restricted to 2006-2023. *** Excluding the two negative R2 values. 
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4.4 Effect of Alternative Starting Values 

This section examines the input demand model goodness-of-fit and residuals when the 

coefficients from the maximum likelihood (ML) models are used as starting values. Table 4.2 

reports the R² values for each DNSP and input across the different datasets, now re-estimated 

using the ML coefficients as starting values.  

Table 4.2    R2 Values using different datasets (ML as starting values) 

 2006-2023   2006-2024  

 Opex OH Lines UG Cables Transfor.  Opex OH Lines UG Cables Transfor. 

EVO 0.039 0.853 0.962 0.985  0.036 0.886 0.905 0.988 

AGD 0.462 0.316 0.830 0.800  0.508 0.312 0.806 0.726 

CIT 0.530 0.068 0.970 0.984  0.547 0.034 0.965 0.986 

END 0.147 0.429 0.984 0.971  0.182 0.502 0.982 0.972 

ENX 0.539 0.965 0.942 0.975  0.613 0.966 0.904 0.962 

ERG 0.461 0.354 0.947 0.957  0.189 0.373 0.949 0.959 

ESS 0.127 0.940 0.800 0.853  0.083 0.940 0.825 0.864 

JEN 0.162 0.845 0.993 0.980  0.118 0.843 0.992 0.973 

PCR 0.488 0.852 0.977 0.997  0.563 0.873 0.981 0.997 

SAP 0.703 0.693 0.967 0.963  0.735 0.727 0.972 0.966 

AND 0.540 0.756 0.997 0.971  0.582 0.677 0.996 0.974 

TND 0.231 0.970 0.977 0.970  0.241 0.974 0.980 0.973 

UED 0.233 0.847 0.994 0.989  0.212 0.851 0.995 0.990 

AVG 0.359 0.684 0.949 0.954   0.355 0.689 0.942 0.948 

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown. 

Figure 4.2 presents the boxplots of residuals associated with these models. It shows that using 

the ML estimates as starting values resolves the issue of residuals not being centred around 

zero for the ERG and AND OH lines regressions.  

The main observations on the models that use ML starting values are: 

• 2006–2023 data sample: On average, the R² values are closely aligned with those 

obtained using 0.001 as the starting values. Importantly, there are no negative R2 

values. Again, the issue with the OH lines input for ERG and AND has disappeared.  

• 2006–2024 data sample: The R² values are generally consistent with those from the 2006–

2024 estimations using 0.001 as the starting value. As with that specification, no 

unusual R² values are observed. 

These results lend support to the use of the ML estimates of coefficients as the starting values 

in next estimating the nonlinear input demand models.  
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Figure 4.3: Residual Distributions by DNSP (2006-2023, ML as starting values) 

Real Opex OH Lines 

  

UG Cables Transformers 

  
Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023. 
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4.5 Conclusions 

This section highlights that in the Leontief models restricted to 2006-2023 period, on which 

the output weights used in the benchmarking report were based, two of the OH lines models 

have problematic residuals that are not centred near zero. The same models have a negative 

R2. This problem is resolved by using the 2006-2024 period. Alternatively, it is resolved by 

using ML-based starting values instead of the standard starting values. 

The negative R² appears to have occurred because the model’s predicted values performed 

worse than the simple average of the observed values. This issue seems to have arisen from 

computational instability, as it was resolved when alternative starting values were used or 

when one additional year of data was included in the estimation. 

These results, and the results presented in section 2, tend to suggest that including the 2024 

data improves the model’s performance compared with using the sample restricted to 2006-

2023 for estimating the output weights. 

5 Other Issues Raised by Stakeholders 

Sections 3 and 4 considered some issues raised by Frontier Economics. This section discusses 

some other comments made by stakeholders.  

5.1 Stakeholder Comments and our response 

AusNet argued that the substantial changes in output weights estimated using the 2006-2023 

sample, compared to those estimated with the 2006-2018 sample, “raise concerns about the 

stability and reliability of the underlying econometric modelling” and “the model specification 

and estimation methods make the estimated output weights highly sensitive to changes in 

input data”. SAPN expressed similar views. Section 2 examines the sources of the changes in 

output weights. Importantly, the data sample has increased from 13 to 18 observations per 

regression, a roughly 40 per cent increase. And there has also been a major change in data 

definitions relating to CCOs. Although it is desirable to have stability in the output weights, it 

may be unrealistic to expect only minor change in these circumstances. 

SAPN points to the fact that in many or most of the input demand functions, of which there 

are four for each DNSP and 52 in total, some of the coefficients pertaining to outputs are zero 

or close to zero. Sometimes, these models only identify a single cost driver for a particular 

input and DNSP. SAPN draws the conclusion that “none of the estimated Leontief models 

are reliable. Therefore, the basis for the updated output weights proposed by Quantonomics 

should be rejected”.  

We do not agree with this reasoning. There is no problem with coefficients taking zero values 

in the individual input demand functions. As discussed in section 3.3 in response to Frontier 

Economics, this is a mistaken argument. The purpose and advantages of estimating the models 
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separately for individual DNSPs were explained by CEPA (2024: 14), namely that it allows a 

highly flexible estimation procedure. The objective being to use the estimated parameters to 

derive the proportionate importance of each output as a driver of each input cost, and 

ultimately total cost, at the industry level. The reasonableness of this set of models needs to be 

evaluated at the industry level, where it is applied to construct weights. As shown in Tables 

2.8 to 2.11, at the aggregate level, each input has a different mix of cost drivers. None of the 

outputs has zero effect on costs for any input. SAPN has not indicated how much of the cost 

of each input it expects should be determined by each output, so it is not possible to conclude 

whether those results are consistent or inconsistent with its expectations.   

Various modelling suggestions are made by submitters: 

(a) EVO notes that the input demand models “do not account for time-varying 

inefficiency”. SAPN concurs that they “do not allow for inefficiency as a possible 

explanator of DNSPs’ inputs … beyond a smooth linear trend”. SAPN therefore 

recognises that the time-trend component of the model could capture time-varying 

inefficiency. Given the presence of the time trend, which will capture the average rate 

of all systematic time-varying effects, EVO and SAPN have not made clear how the 

models do not allow for time-varying inefficiency. 

(b) EVO states that the models omit “some potentially relevant output variables (such as 

for consumer energy resources)”. SAPN also criticises the output specification for 

failing to include “the delivery of CER services”. AGD notes that “demand-sides 

initiatives and CER integration … may appear as output reductions …”. Whilst it is 

desirable to account for these increasingly important services, the AER investigated 

this issue in 2023 and concluded that at the present time there is insufficient data 

include export services in the benchmarking framework, but it “may reconsider this 

position in the future when more robust export services expenditure data is available” 

(AER, 2023: 8). 

(c) EVO argues that the models should be estimated using panel regressions, rather than 

by individual DNSP. “As the models are not estimated as panel regressions, all data 

variation is derived exclusively from variation over time (i.e., there is no cross-sectional 

variation), which results in poorer model fit.” While this observation is not 

unreasonable, such an approach would reduce the flexibility of the modelling, noting 

that CEPA regarded this as an advantage of the Economic Insights method.  

(d) AND proposes that smoothing techniques be used to minimise abrupt changes in 

output weights due to model sensitivity. We have addressed the reasons for changes in 

output weights. Note that for the last four samples from 2006-2021 to 2006-2024 there 

have not been major changes in the output weights. Regarding smoothing techniques, 

while nothing specific was proposed, there is a wide range of methods, and such an 
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approach may introduce ad hoc use of such methods, and subjective judgements. If that 

were the case, it would not be suitable. 

(e) SAPN suggests that an alternative method of averaging the results across DNSPs be 

considered. This question is explored in section 5.2. 

Some have expressed views supportive of the output weights analysis. JEN stated:  

We recognise the trade-offs between model complexity and statistical significance. Given 

the current data limitations, we agree with Quantonomics’ view to retain the existing 

estimation approach. It offers regulatory certainty and consistency, and the results are 

broadly aligned with those suggested by CEPA’s independent review. 

Overall, there may be merit in further investigation of methods of estimating output weights, 

although we note that CEPA investigated the output weights methodologies in 2024 in its 

independent review and associated industry consultation. Hence, there is no presumption that 

a consistently better method could readily be found. 

Differing views were expressed on the frequency of updating output weights. JEN expressed 

support in “revisiting the output weight estimation approach in five years, when a larger data 

sample becomes available”. ENX/ERG “recommend that the AER adopt an ongoing 

(annual) update process for non-reliability output weights”. There are pros and cons to each 

suggestion. One benefit of an annual updating process is that it would reduce the likelihood 

of substantial data revisions accumulating over time and causing a large impact when the 

output weights are updated. On the other hand, updating every year may be less amenable to 

making year-to-year comparisons of changes in productivity and rankings on a like-for-like 

basis.  

5.2 Alternative Methods of Averaging of Output Cost Shares 

According to SA Power Networks: 

A further limitation of the current method is that the industry non-reliability output 

weights are calculated based on the ‘total cost shares’ across the 13 DNSPs, which causes 

the results to be dominated by the largest DNSPs. This happens because the largest DNSPs 

contribute the most to the total estimated industry cost. There is little justification for 

assuming that the relationship between inputs and outputs for the largest DNSPs should 

dictate the output weights applied to all other DNSPs. By contrast, the econometric 

benchmarking models used by the AER to assess the efficiency of base year opex 

effectively weight all DNSPs equally, which in our view is more appropriate. (SA Power 

Networks, 2025: 8) 

It is correct that in Economic Insights’ method, the industry output cost shares are a weighted 

average of the output cost shares of the DNSPs, where the weights are their shares to total 

industry cost. This method has a clear internal logic. The method is designed to fully allocate 

each DNSP’s cost of using each input to each of the four outputs. The cost attributed to one 
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output can then be aggregated over inputs and over DNSPs to obtain the share of that output 

in total industry cost. 

Whilst noting the logic of the Economic Insights method, given the substantial changes in the 

estimated output weights compared to those previously estimated using the 2006-2018 data 

sample, it is of interest to consider whether an alternative averaging method yields different 

weights or patterns of change. The alternative examined in this section is to firstly calculate 

the output cost shares for each input for each DNSP using Economic Insights’ method, and 

then to average the cost shares of each output over DNSPs using a simple (arithmetic) average 

of the cost shares of the DNSPs instead of a weighted average. 

The results of this approach (using standard starting values for parameters in the NLS models) 

are shown in Table 5.1 and Figure 5.1. The corresponding results under weighted averaging 

are presented in Table 2.2 and Figure 2.1 in section 2. The arithmetic averaging of the output 

cost shares results for the 2006-2023 data sample show that Energy Throughput has a much 

higher estimated cost share, namely 15.9 per cent compared to 10.8 per cent using the 

weighted average cost shares. RMD has a much lower cost share of 38.3 per cent, compared 

to 47.8 per cent using the weighted average cost shares. Customer numbers has a cost share of 

15.8 per cent, similar to the 15.2 per cent weighted average cost share. Circuit length has a 

share of 30.0 per cent, which is higher than its 26.2 per cent weighted average cost share. 

Figure 5.1 shows a similarity of trends over different data samples. The key changes are: (a) a 

substantial increase in the cost share of RMD between the 2006-2018 and 2006-2023 data 

samples; (b) a substantial decrease in the cost share of Circuit Length between the same two 

data samples; and (c) Energy Throughput also has a significant increase in its average cost 

share. Overall, the nature of the changes on the cost shares between the 2006-2018 and 2006-

2023 data samples are broadly directionally similar to the weighted average method. 
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Table 5.1  DNSP Simple Average Output Cost-Share Weights with Different Data Samples 

  2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024 

Energy Throughput 11.9% 10.1% 14.2% 18.8% 15.5% 15.9% 17.0% 

RMD 27.1% 30.6% 32.0% 35.9% 35.3% 38.3% 35.8% 

Customers 16.8% 16.2% 15.8% 14.8% 14.7% 15.8% 18.3% 

Circuit Length 44.2% 43.1% 38.0% 30.5% 34.5% 30.0% 28.9% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Note: Results were obtained using the ABR25 dataset, restricted as shown. 

Figure 5.1  DNSP Simple Output Cost-Share Weights with Different Data Samples 
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6 Conclusions 

This memo has examined the drivers of changes in the output weights and addressed the 

criticisms raised by DNSPs regarding model specification. 

As discussed in Section 2, most of the changes in the output weights were driven by the 

inclusion of additional data, with revisions to data definitions also playing an important role. 

Specifically, the sharp increase in the cost share of RMD reflects the combined effect of data 

revisions and the addition of new data, both of which substantially increase its weight. The 

modest increase in the cost share of Energy Throughput is due to largely offsetting effects 

between data revisions and new data. The sharp decline in the cost share of Circuit Length is 

mainly explained by the additional data, which reduced the estimated influence of this output 

on input demands.  

The largest changes in output weights, particularly for RMD and Circuit Length, occurred 

with the inclusion of the 2020 and 2021 data. With the additional data, the relationship 

between Opex and Circuit Length weakened and the importance of Circuit Length as a driver 

of OH Lines and UG Cables declined (perhaps reflecting changes (increases) in line 

capacities). Costs were increasingly attributed to RMD across all inputs. At the same time, the 

sharp fall in capital input prices in 2020 and 2021 raised the share of Opex in total costs. Since 

RMD accounts for a relatively high share of Opex costs while Circuit Length accounts for a 

relatively low share, these effects accentuated the overall shift in cost shares away from Circuit 

Length and towards RMD. 

In Section 3, we consider Frontier Economics’ proposal to use alternative starting values, 

obtained by adding an extra step to the estimation process. We recognise the merit of their 

approach and recommend it as a potential improvement. However, we also highlight its 

limitations, including convergence failures in two of the 52 models. For these cases, we suggest 

reverting to the standard starting value of 0.001. While the approach of using ML-derived 

starting values produces similar weights for Circuit Length and Customer Numbers and lower 

weights for Energy Throughput, it further amplifies the increase in the RMD weight. 

In Section 4, we review the residuals and model fit of the tested models. For ERG and AND 

in the overhead lines estimation, residuals were not centred, and the R² values were highly 

negative, indicating computational issues. These problems were resolved by either including 

the 2024 data or by adopting the ML-based starting values suggested by Frontier Economics. 

As the inclusion of the 2024 data does not materially affect the output weights, we conclude 

that these issues do not undermine the weight estimates. Apart from these exceptions, the R² 

values are broadly consistent across all datasets and under the ML approach, with lower R² 

values for opex input demand functions, moderate values for overhead lines, and very high 

values for underground cables and transformers. 
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In Section 5, we consider the remaining stakeholder comments. An important concern of 

several DNSPs is the size of the changes in the updated output weights, compared to those 

estimated by Economic Insights in 2020. While stability in output weights is desirable, given 

the substantial additional data and data revisions since that previous study, it may be 

unrealistic to expect only minor changes. The results presented in section 2 for successive 

results using the data samples from 2006-2021 to 2006-2024 do not support the contention of 

some stakeholders that the Leontief method suffers from instability of estimated output 

weights. In response to some of the detailed criticisms of specific input demand models, we 

observe that the models were designed to provide flexibility and to estimate weights at the 

industry level rather than for individual DNSPs.  

We have addressed SAPN’s claim that the output weights are disproportionately influenced 

by the largest DNSPs by testing an alternative averaging method. We do not agree with the 

logic of SAPN’s approach, given the interest in industry cost shares. However, for 

completeness, we tested SAPN’s alternative method. This resulted in a much higher estimated 

cost share for Energy Throughput, a lower share for RMD, a similar share for Customer 

Numbers, and a higher share for Circuit Length. Nevertheless, the overall trends in output 

weight changes were broadly directionally similar to those using the Economic Insights 

method. 

In summary, while there may be scope to refine the models used to estimate output weights, 

the evidence shows that the material changes in weights are primarily driven by data inclusion 

and revisions. The observed changes in output weights are not an artefact of estimation 

shortcomings, and potential improvements in model specification do not alter the materiality 

of these results. 
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Appendix A    Actual Values versus Fitted Values, 2006-2023 Data  

Figures A.1 to A.13 show the actual values (red dots) and the fitted or predicted values (black 

line) from the output weight estimations using the 2006–2023 period and ABR25 dataset 

applied in the Benchmarking Report 2025. The key observations are: 

• Underground cables and transformers: The fitted values generally align closely with 

the actual values. This is consistent with the boxplot analysis, where the medians of 

the residuals for these variables are near zero.  

• Opex: The alignment between actual and predicted values is weak overall, and this 

may reflect a model misspecification. While addressing this is beyond the scope of the 

current analysis, it is worth noting that the model only incorporates a linear trend, even 

though the opex trend commonly shifts mid-sample due to efficiency improvements. 

Allowing for a quadratic trend could be a useful refinement.  

• Overhead lines: The alignment is strong for some DNSPs (EVO, ENX, ESS and TND) 

but noticeably weak for others (AGD, CIT and END). More importantly, for two 

DNSPs (ERG and AND), the fitted line does not intersect the cloud of actual values, 

suggesting computational issues. 
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Figure A.1: EVO – Actual vs Predicted Values (2006-2023) 
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Figure A.2: AGD– Actual vs Predicted Values (2006-2023) 
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Figure A1.3: CIT– Actual vs Predicted Values (2006-2023) 
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Figure A1.4: END– Actual vs Predicted Values (2006-2023) 
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Figure A1.5: ENX– Actual vs Predicted Values (2006-2023) 
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Figure A1.6: ERG– Actual vs Predicted Values (2006-2023) 

Real Opex  OH Lines  

  

UG Cables  Transformers  

  



 

 

 
40 

Output Index Weights 

 

Figure A1.7: ESS– Actual vs Predicted Values (2006-2023) 
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Figure A1.8: JEN– Actual vs Predicted Values (2006-2023) 
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Figure A1.9: PCR– Actual vs Predicted Values (2006-2023) 
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Figure A1.10: SAP– Actual vs Predicted Values (2006-2023) 
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Figure A1.11: AND– Actual vs Predicted Values (2006-2023) 
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Figure A1.12: TND– Actual vs Predicted Values (2006-2023) 
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Figure A1.13: UED– Actual vs Predicted Values (2006-2023) 
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