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1 Introduction

The Quantonomics memo ‘Nonreliability Output Index Weights ABR25’ of 13 June 2025
updated the output weights for DNSPs and TNSPs, previously last estimated in 2020. The
previous weights were based on data from 2006-2018.! The updated output weights followed,
and were in response to, an independent review by the Centre for Efficiency and Productivity
Analysis (CEPA) at the University of Queensland (Peyrache, 2024). They are based on the
same methodology as used previously by Economic Insights and use data for 2006-2023.

The updated output weights memo received critical comment from several stakeholders,
including AusNet, Evoenergy, SA Power Networks (SAPN) and Ausgrid. Favourable
comments were made by Jemena, Ergon/Energex and TasNetworks. A major concern put
forward in the submissions is that the updated weights differ materially from those estimated
in 2020.

The purpose of this memo is to identify the factors driving the substantial changes in the
updated set of output weights and to address stakeholders’ comments. Section 2 of this
supplementary analysis investigates reasons for the substantial changes in the index weights
between the 2020 and 2025 studies.? Subsequent sections investigate issues that form the main
criticisms of stakeholders. Frontier Economics, commissioned by SAPN and Evoenergy, is
critical, among other things, of the starting values used for parameter estimation in the
nonlinear least squares (NLS) estimation. This issue is investigated in Section 3.

SAPN and Frontier Economics are also critical of the reliability of the econometric Leontief
input demand models which are used to calculate the output weights in the Economic Insights
method. These issues are addressed in section 4 through an investigation of regression
residuals and goodness-of-fit statistics. Some of the stakeholders’ methodological criticisms
and other comments are discussed in Section 5. SAPN suggested that alternative ways of
averaging the output cost shares across DNSPs should be considered. One alternative method
1s investigated in Section 5. Lastly, section 6 summarises the conclusions.

2 Results using Different Data Samples

This section examines the reasons for the changes in estimated output weights compared to
those published in 2020. Given the methodology for calculating the estimates has been
maintained, the reasons for the changes may be:

(a) the inclusion of an additional five years of data (2019-2023) and

! DNSP output cost weights were first updated in 2018 using data from 2006-2017, after remaining fixed since
the start of economic benchmarking in 2014. Although the intention was to hold these weights constant for five
years, a further update was undertaken in 2020 (using 2006-2018 data) to correct an identified time-trend error
(Economic Insights, 2020: 4).

2 This analysis of the changes output weights is limited to the Economic Insights method and does not include the
methods for cross-checking proposed by CEPA and implemented in the June 2025 Quantonomics memo.
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(b) revisions to data, including

o a redefinition of opex input to include capitalised corporate overheads (CCO)
and associated changes to the annual user cost (AUC) of capital inputs

o changes in the AUC calculations to address issues with inflation.

The results presented in this section all use the Economic Insights method, applied using
Stata’s nl command for nonlinear regression, and using starting values of 0.001 for all
parameters. Unless otherwise stated, the ABR25 dataset is generally used in this section and
restricted as needed.? The updated non-reliability output weights in the June 2025 memo are
based on the ABR25 dataset restricted to the 2006-2023 period.

2.1 Effects of Changes in Data Definitions

Table 2.1 presents a comparison of the output cost shares estimated with the 2006-2018 data
sample using the ABR19 dataset (covering 2006-2018), with which they were originally
estimated, and using the ABR25 dataset (for years 2006-2018 only). This comparison shows
the effects of data revisions, such as the revised treatment of CCOs in opex and AUC for
DNSPs, and the changes in AUC calculation to address issues with inflation.

The changes in data definitions have had the effects of:
e Substantially increasing the weight attributed to RMD (by 5.63 percentage points), and

e Reducing the weights of other outputs, especially Energy Throughput.

Table 2.1 DNSP Output Cost-Share Weights with Different Datasets (2006-2018)

ABR19* ABR25 Diff (0.p.).
Energy Throughput 8.58% 5.31% -3.27%
RMD 33.76% 39.39% 5.63%
Customers 18.52% 17.83% -0.69%
Circuit Length 39.14% 37.47% -1.67%
Total 100.00% 100.00% 0.00%

Note: *From Economic Insights (2020:4)

2.2 Trends and volatility of Cost Share Weights

Sequentially adding a single year to the sample produces a series of output cost share estimates
using samples from 2006-2018 to 2006-2024 using the ABR25 dataset. These are presented in
Table 2.2.

> We refer to the dataset used in the 2025 Annual Benchmarking Report (ABR) as ABR25, which covers the period
2006-2024. Similarly, ABR19 refers to the dataset used in the 2019 ABR, covering 2006-2018. The distinction
between these datasets is important, as each ABR release incorporates different data revisions. By using the most
recent dataset (i.e. ABR25), we ensure that all available data corrections and revisions are reflected in the analysis.
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Table 2.2 DNSP Output Cost-Share Weights with Different Data Samples

2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024
Energy Throughput 5.31% 4.10% 6.19% 9.35% 8.77% 10.79% 9.96%
RMD 39.39% 41.89% 44.41% 48.43% 45.67% 47.83% 45.31%
Customers 17.83% 17.39% 16.92% 15.37% 14.81% 15.23% 18.44%
Circuit Length 37.47% 36.62% 32.48% 26.85% 30.76% 26.15% 26.29%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant shown.

Figure 2.1 DNSP Output Cost-Share Weights with Different Data Samples
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The results shed light on:

e whether the addition of any specific years results in substantial changes to the
estimates;

e trends in output cost share weights over successive samples; and

e the degree of volatility of output cost share weights.

Figure 2.1 also presents the patterns of the output share weights as the sample is incrementally
expanded.

Table 2.2 and Figure 2.1 show that whilst there is some volatility in the output weights for
DNSPs when estimated over the different data samples, of more importance are the shifts,
especially when the sample was expanded to include 2020 and 2021, towards higher cost shares for
Energy Throughput and RMD and a lower cost share for Circuit Length. From 2006-2021 to
2006-2024, the cost share estimates have been reasonably stable.

2.3 Special factors affecting 2020 and 2021

This section further examines the effects of additional data on output weights. The two main
questions relate to (a) structural changes in the input demand functions as the sample has
increased; and (b) the effects of changes in input prices on the cost shares of the different
inputs, combined with the differences between inputs in the relative importance of the outputs
as cost drivers.

To investigate structural changes, Table 2.3 aggregates the estimated coefficients of all the
opex input demand functions of the 13 DNSPs for each sample period. Specifically, the
squared coefficients applying to each output and the coefficient on the time trend have each
been summed across DNSPs, to illustrate, at the industry level, the trends of the coefficients
between data samples. Similarly, Tables 2.4 to 2.6 show the aggregated coefficients relating to
the overhead lines (“OH Lines”), underground cables (“UG cables”) and transformers,
respectively.

Table 2.3 shows a weakening of the relationship between opex and circuit length in the 2006-
2020 and 2006-2021 data samples. The aggregate squared coefficient applying to circuit length
falls from 21.04 in the 2006-2019 data sample, to 12.23 in the 2006-2020 and 0.69 in the 2006-
2021. Although there is a partial reversal in the 2006-2022 sample, in the following two data
samples, the relationship between opex and circuit length is similar to the 2006-2021 sample.
This change may be related to the efficiencies achieved in opex. Commensurately, there have
been trends toward greater effects of Energy and RMD.
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Table 2.3 Aggregate Opex Function Coefficients
2006-2018  2006-2019  2006-2020  2006-2021  2006-2022  2006-2023  2006-2024

a2, (Energy) 27.80 24.86 36.22 49.19 40.27 45.01 54.31
a2, (RMD) 334.78 375.09 384.89 445.23 423.41 461.41 405.47
a2, (Cust.) 0.47 0.46 0.49 0.51 0.53 0.61 0.61
a2, (CircLen.) 23.22 21.04 12.23 0.69 8.94 0.58 0.60
b, 0.18 0.13 0.09 0.06 0.01 0.03 0.04

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Tables 2.4 to 2.6 show the aggregated function for the three capital inputs, and all show some
trend toward greater importance of RMD. In Table 2.6, Transformer demand is also more
strongly affected by Energy Throughput in the 2006-2021 to 2006-2023 data samples, but this
effect is no longer present in the 2006-2024 sample. Aside from these effects, the capital inputs
do not appear to show major structural shifts and differ in this regard from the opex input

demand function.

Table 2.4 Aggregate OH Lines Function Coefficients
2006-2018  2006-2019  2006-2020 2006-2021  2006-2022  2006-2023  2006-2024

@3, (Energy) 10.88 9.38 11.38 9.56 11.28 10.40 9.61
as, (RMD) 167.25 154.68 127.02 177.82 203.96 227.20 229.64
@35 (Cust.) 0.57 0.57 0.58 0.56 0.57 0.56 0.55
a3, (CircLen.) 59.66 61.06 65.07 54.97 51.15 50.18 49.75
b, -0.03 -0.05 -0.06 -0.04 -0.04 -0.04 -0.04

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Table 2.5 Aggregate UG Cables Function Coefficients
2006-2018  2006-2019  2006-2020 2006-2021  2006-2022  2006-2023  2006-2024

a2, (Energy) 0.19 0.00 0.17 0.27 0.62 0.53 1.06
a2, (RMD) 22.91 23.45 25.65 26.55 26.58 27.43 36.55
a2, (Cust.) 0.08 0.09 0.07 0.07 0.07 0.07 0.06
a2, (CircLen.) 9.39 9.51 9.11 8.86 8.71 9.05 7.39
b, 0.45 0.44 0.44 0.43 0.42 0.42 0.42

Note: Results were obtained using the ABR25 dataset, restricted to the relevant shown.

Table 2.6 Aggregate Transformer Function Coefficients
2006-2018  2006-2019  2006-2020  2006-2021  2006-2022  2006-2023  2006-2024

a2, (Energy) 1.27 1.11 0.77 2.15 2.00 1.69 0.47
a2, (RMD) 10.59 12.45 14.49 14.57 16.28 16.79 16.14
a2, (Cust.) 0.06 0.06 0.05 0.04 0.03 0.04 0.06
a2, (CircLen.) 2.29 2.24 2.50 2.31 2.31 2.44 2.29
b, 0.24 0.23 0.21 0.21 0.20 0.18 0.17

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.
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Another data change relevant to 2020 and 2021 is the substantial decrease in capital input
prices in those two years, which increases the relative importance of the opex input in total
cost. Table 2.7 shows the trends in the relative importance of each input in total cost between
the data samples. The cost share of opex began to increase in the 2006-2020 data sample and
increased further in each sample up to 2006-2023.* Among the capital inputs, UG Cables had
the largest decline.

Table 2.8 shows the shares of opex cost estimated to be attributable to each output in each
data sample. Tables 2.9 to 2.11 show the shares of each capital input cost estimated to be
attributable to each output in each data sample. Table 2.8 shows the majority of Opex is driven
by RMD, so the increased cost share of opex caused RMD to increase in overall importance.
Table 2.8 also highlights the effects of the structural changes in the opex input demand
function previously noted. A substantial decline in the proportion of Opex attributed to the
circuit length output, an increase in the proportion attributed to energy, and an increase in the
proportion of cost attributed to RMD between the 2006-2018 and 2006-2023 samples
(although this decreased in 2006-2024).

Table 2.7 Input Total Cost Shares (%)

Data sample Opex OH Lines UG Cables Transformers Total
2006-2018 41.9% 18.5% 13.0% 26.6% 100.0%
2006-2019 41.9% 18.5% 13.0% 26.6% 100.0%
2006-2020 42.0% 18.5% 12.9% 26.5% 100.0%
2006-2021 42.3% 18.4% 12.9% 26.5% 100.0%
2006-2022 42.4% 18.4% 12.8% 26.4% 100.0%
2006-2023 42.5% 18.4% 12.7% 26.4% 100.0%
2006-2024 42.3% 18.5% 12.7% 26.5% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Table 2.8 Opex Cost: Per cent Attributable to Outputs

Data sample Energy RMD Cust CircLen Total

2006-2018 8.4% 56.9% 14.9% 19.8% 100.0%
2006-2019 7.0% 60.5% 14.8% 17.7% 100.0%
2006-2020 11.3% 63.9% 14.9% 9.9% 100.0%
2006-2021 11.7% 70.6% 15.2% 2.5% 100.0%
2006-2022 10.4% 61.1% 15.4% 13.1% 100.0%
2006-2023 15.9% 65.6% 16.4% 2.1% 100.0%
2006-2024 21.0% 58.9% 16.4% 3.7% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Tables 2.9 and 2.10 show that the major cost driver of OH Lines and UG Cables is circuit
length, which is logical given that extensions to the network will need additional OH Line and

4 Table 2.7 shows incremental impact of adding one more year on the input cost shares for the entire sample period
examined. The implied change in the input cost share for the additional one year is more significant.



Quantonomics
@) utput Index Weights QUANTITATIVE ECONOMICS

UG Cable inputs. However, with additional data, circuit length has decreased in relative
importance as a cost driver for these two inputs. This may be due to an increasing proportion
of the growth in OH Lines and UG Cables coming from line/cable capacity re-rating.

Table 2.9 OH Lines Cost: Percent Attributable to Outputs

Data sample Energy RMD Cust CircLen Total
2006-2018 2.8% 12.9% 10.9% 73.4% 100.0%
2006-2019 2.2% 12.1% 10.8% 74.9% 100.0%
2006-2020 2.8% 11.5% 11.0% 74.7% 100.0%
2006-2021 2.2% 15.3% 11.0% 71.5% 100.0%
2006-2022 2.7% 16.9% 11.0% 69.4% 100.0%
2006-2023 2.4% 17.7% 10.7% 69.2% 100.0%
2006-2024 2.2% 17.9% 10.9% 69.0% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Table 2.10 UG Cables Cost: Percent Attributable to Outputs

Data sample Energy RMD Cust CircLen Total
2006-2018 0.9% 28.3% 10.0% 60.7% 100.0%
2006-2019 0.0% 29.1% 10.2% 60.7% 100.0%
2006-2020 0.8% 32.8% 8.9% 57.6% 100.0%
2006-2021 1.2% 34.5% 13.3% 51.0% 100.0%
2006-2022 2.9% 34.2% 15.3% 47.5% 100.0%
2006-2023 2.6% 34.8% 15.1% 47.5% 100.0%
2006-2024 2.9% 41.6% 15.0% 40.5% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

Table 2.11 Transformers Cost: Percent Attributable to Outputs

Data sample Energy RMD Cust CircLen Total
2006-2018 4.3% 35.4% 31.2% 29.0% 100.0%
2006-2019 2.8% 39.8% 29.5% 27.8% 100.0%
2006-2020 3.2% 42.4% 28.3% 26.2% 100.0%
2006-2021 14.5% 42.9% 19.7% 22.9% 100.0%
2006-2022 13.2% 46.5% 16.3% 24.0% 100.0%
2006-2023 12.5% 47.1% 16.8% 23.7% 100.0%
2006-2024 1.2% 44.5% 28.7% 25.6% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years shown.

In the 2006-2018 sample, Transformer costs were attributable in roughly equal proportions to
RMD, Customer Numbers and Circuit Length. However, in 2006-2023, a much larger
proportion of Transformer costs was attributable to RMD and Energy, and smaller
proportions were attributable to Customer numbers and Circuit Length. These changes have
been partly reversed in the 2006-2024 data sample, especially the cost share attributable to
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Energy. The 2006-2024 data sample appears to produce a more consistent attribution of
Transformer costs than the 2006-2023 sample.

2.4 Summary observations

Table 2.12 summarises the effects of the data revisions and the additional data, comparing the
2006-2018 dataset with the 2006-2023 dataset. The second column reproduces the last column
of Table 2.1. The third column represents the estimated effect of additional data. It is obtained
by subtracting the 2™ column of Table 2.2 (the output cost shares using the 2006-2018 sample)
from the 2"-last column of Table 2.2 (the output cost shares estimated using the 2006-2023
sample. The last column of Table 2.12 shows the combined effects. This Table shows:

e The large increase in the cost share of RMD is a combination of increases due to data
revisions and to additional data, both considerably raising its weight;

e The modest increase in the cost share of Energy Throughput is due to largely offsetting
effects from data revisions and additional data;

e The large decrease in the cost share of Circuit Length is mostly due to the additional
data, which has tended to reduce the estimated influence of this output on input
demands.

Table 2.12 Decomposition of DNSP Output Cost-Share Changes between 2006-2018 and 2006-
2023*

Diff’ due to Diff’ due to Total

data revisions additional data Change

Energy Throughput -3.27% 5.48% 2.21%
RMD 5.63% 8.44% 14.07%
Customers -0.69% -2.60% -3.29%
Circuit Length -1.67% -11.32% -12.99%
Total 0.00% 0.00% 0.00%

Note: * Using ABR25 dataset.

The effects of additional data were mostly associated with the addition of 2020 and 2021 data.
They appear to be driven by the following main factors:

e The weakening of the relationship between opex and circuit length in the 2006-2020
and 2006-2021 data samples, perhaps related to the efficiencies that have been achieved
n opex.

e A relatively steady trend towards reduced importance of circuit length as a driver of
OH Lines and UG Cables costs, perhaps due to changing (increasing) line capacities.

e A relatively steady trend toward greater attribution of costs to RMD for all inputs.

e A large reduction in the prices of capital inputs in 2020 and 2021, which increased the
share of opex in total costs. Since a relatively high share of Opex is attributed to RMD
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and a relatively low share is attributed to circuit length, this accentuated the shift of
overall cost share away from Circuit Length towards RMD.

3 Alternative Starting Values

3.1 Frontier Economics’ Analysis

Evoenergy’s submission states:

Frontier Economics has identified that Quantonomics did not estimate the Leontief model
correctly in six instances. Quantonomics uses the nl package in Stata to estimate each
model. ... Using a different approach (maximum likelihood estimation), Frontier
Economics identified six models that had materially different coefficient estimates to the
results presented by Quantonomics. When those coefficient estimates were fed into the nl
Stata package as starting values, the solver identified a different set of estimated
coefficients than results presented by Quantonomics, with an improved model fit (i.e.,
lower sum of squared residuals). This means that the Quantonomics estimates were not
valid estimates as they did not minimise the sum of squared residuals. (Evoenergy, 2025)

The Quantonomics output weights memo relied only on the method used by Economic
Insights and the key methods proposed by CEPA. Frontier Economics’ approach of using
maximum likelthood (ML) estimation to obtain alternative starting values for applying the
Economic Insights method is of interest as a potential improvement (albeit adding an extra
step in the process of the NLS estimation, to first derive the alternative starting values).

It can be taken as given that a method employed for some DNSPs must also be used for all
DNSPs. It would not be satisfactory to use different methods for different DNSPs in some ad
hoc manner. A method that cannot be consistently applied to reliably produce results for all
DNSPs cannot be used to produce a reliable set of output weights, because some of the
constituent models are unreliable. Furthermore, since a consistent method is needed to
produce the average output weights, a method that performs better for 6 of the 52 input
demand models does not necessarily consistently produce superior results over all models and
is therefore not necessarily a better method or even a feasible method.

In this section, we estimate the input demand models by first estimating the models using
Stata’s ml functionality, which allows the user to specify the log likelihood function to be
minimised. The convergence properties of this estimator are discussed. The resulting
estimated coefficients are then used as starting values in the nonlinear least squares (NLS)
estimation of input demand functions. For each regression (for each DNSP and input), the
resulting sum of squared residuals is compared to those obtained using the Economic Insights
method.

10
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3.1.1 Convergence of ML models

Table 3.1 shows the convergence results of ML models using the 2006-2023 and 2006-2024
samples. For these ML models, we use the standard 0.001 as starting values, in line with
Frontier Economics’ approach. There are 52 models to be estimated in total. In both samples,
two of the ML models failed to converge. This means that the method of using ML estimates
to obtain starting values cannot be applied consistently because in some cases they do not
converge. In the cases where the ML models did not successfully converge, we have used
parameter starting values of 0.001 in a single step for the NLS estimation.’

Table 3.1 Convergence of ML Models

Sample period Models failing to achieve convergence
ESS UG/ Cabl
2006-2023 ° ables
e ESS Transformers
ED 1
2006-2024 e UED UG/Cables

e UED Transformers

3.1.2 Results of Using ML Estimates as Starting Values

The purpose is to test whether the root mean square error (RMSE) of each input demand
model is lower (or no higher) when the ML estimates are used as starting values than when
the starting values used by Economic Insights are used.® Tables 3.2 and 3.3 present
comparisons of the RMSEs for each model using the standard starting values compared to the
RMSEs obtained when the ML estimates are used as starting values. Table 3.2 uses the 2006-
2024 sample period, and Table 3.3 uses the 2006-2023 period. In both sample periods:’

e 15 of the models have a lower RMSE when the ML starting values are used

e 2 of the models have a higher RMSE when the ML starting values are used. In the
2006-2024 sample, AGD UG cables and TND transformers. In the 2006-2024 sample,
PCR real opex and TND transformers.

e For the remaining 35 models, the RMSE is unchanged.
On balance, the use of the ML starting values tends to produce some improvement in lowering

the RMSE. On average over both sample periods (ie, 104 models), the percentage reduction in
RMSE is 3.3 per cent.

* For the output-related parameters a;; (for input demand 7 and output 5), which are squared in the Economic
Insights specification, we have used the absolute values of the first-round estimates as starting values for the
second-round estimation.

® Comparing RMSE values is one method of comparing the goodness-of-fit of econometric specifications (Baum,
2006: 79). Unlike R?, the RMSE is not bounded between 0 and 1 and expresses the average distance between
predicted and actual values in absolute terms, whereas R? indicates the proportion of variance in the dependent
variable explained by the model.

7 A threshold of 1 per cent is used when we refer to an RMSE being higher or lower than another.

11
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Table 3.2 RMSE by Input Demand Model, 2006-2024 data sample

Standard starting Values ML starting values
DNSP x1 x2 x3 x4 x1 x2 x3 x4
1.EVO 8,986 2,209 747 39 8,811 2,209 720 39
2. AGD 58,507 6,948 4,255 1,528 58,507 6,514 4,255 1,528
3.CIT 4,198 140 239 67 3,990 140 239 67
4. END 17,649 6,201 1,788 402 17,649 6,201 1,788 402
5. ENX 20,104 3,132 4,196 679 20,104 3,132 4,196 655
6. ERG 31,743 13,280 805 426 31,743 13,280 781 413
7. ESS 49,316 8,120 1,876 743 49,316 8,120 1,815 686
8. JEN 8,777 1,530 293 106 8,337 870 293 106
9. PCR 10,993 1,314 648 86 11,301 1,314 648 83
10. SAP 15,068 1,651 695 288 14,941 1,651 695 288
11. AND 13,479 2,625 389 178 13,479 2,625 389 173
12. TND 7,740 662 160 84 7,081 662 160 86
13. UED 8,262 2,122 134 104 8,262 2,054 134 104
Table 3.3 RMSE by Input Demand Model, 2006-2023 data sample
Standard starting Values ML starting values
DNSP x1 x2 x3 x4 x1 x2 x3 x4
1. EVO 9,075 2,356 341 40 8,979 2,274 341 40
2. AGD 62,310 6,708 3,971 1,346 60,264 6,708 4,066 1,346
3.CIT 4,101 140 246 68 4,101 140 229 68
4. END 18,853 6,400 1,653 402 18,192 6,400 1,653 402
5. ENX 19,999 5,992 3,150 518 19,999 3,108 3,150 518
6. ERG 25,070 43,575 781 414 25,070 13,632 781 414
7. ESS 49,582 8,120 1,874 674 49,582 8,120 1,874 674
8. JEN 8,362 859 253 89 8,362 859 244 86
9. PCR 11,802 1,357 716 83 11,802 1,357 665 83
10. SAP 15,412 1,708 729 308 15,057 1,708 729 294
11. AND 14,222 24,689 345 175 13,770 2,349 345 175
12. TND 7,300 684 165 85 7,300 684 165 88
13. UED 8,395 2,172 138 107 8,395 2,098 138 107

Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023.

3.1.3 Implications for Output Cost Shares

In Table 3.4, the output cost shares estimated using the models that use the ML starting values

are compared to those estimated using the standard starting values. These comparisons show

that, compared to the standard starting values, the ML starting values produce:

e lower cost shares for Energy Throughput, particularly in the 2006-2023 data sample,
with a much smaller effect in the 2006-2024 sample;

e higher cost shares for RMD by approximately 4 percentage points in both samples;

e the customer numbers cost share is similar in the 2006-2023 sample, but lower in the
2006-2024 sample; and
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e cost shares for Circuit Length are similar in both sample periods.

Table 3.4 Comparison of Output Cost Shares with ML Starting Values

Standard starting values ML starting values

2006-2023 2006-2024 2006-2023 2006-2024
Energy Throughput 10.79% 9.96% 6.78% 8.08%
RMD 47.83% 45.31% 52.06% 49.11%
Customers 15.23% 18.44% 15.12% 15.33%
Circuit Length 26.15% 26.29% 26.04% 27.48%
Total 100.00% 100.00% 100.00% 100.00%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown.

As shown in Table 2.12, the main changes from the weights estimated by Economic Insights
in 2020 are the large increase in the cost share of RMD and the decrease in the cost share of
Circuit Length. Table 3.5 shows that Frontier Economics’ method of using ML starting values
does not substantially alter the main changes in weights. The changes from the previous
weights remains quite significant and move broadly in the same direction as those observed
with our original estimates (the only exception being energy throughput).

Table 3.5 Difference from Previous Weights

Standard starting values ML starting values

2006-2023 2006-2024 2006-2023 2006-2024
Energy Throughput 2.21% 1.38% -1.80% -0.50%
RMD 14.07% 11.55% 18.30% 15.35%
Customers -3.29% -0.08% -3.40% -3.19%
Circuit Length -12.99% -12.85% -13.10% -11.66%
Total 0.00% 0.00% 0.00% 0.00%

3.2 Preceding Sample Estimates as Starting Values

Another approach to starting values is to use previously estimated parameters as starting
values. This is the method used by CEPA. This method can be extended to sequentially
estimate output weights using parameters previously estimated with the previous, smaller data
sample.® Table 3.6 presents output cost share results obtained using each sample period from
2006-2018 to 2006-2024. Figure 3.1 depicts the patterns of output weights obtained. An
important feature is the large shifts to greater RMD weight and smaller Circuit Length weight.

8 For the 2006-2018 data sample, the Economic Insights parameter estimates are used as starting values. The
models applied to the 2006-2019 dataset use the coefficients estimated with the 2006-2018 data, and so on, by
adding one year at a time, and using the estimated coefficients of the preceding sample as starting values for the
next (more specifically, the absolute values of the squared parameters).

13



Quantonomics

Output Index Weights QUANTITATIVE ECONOMICS

Table 3.6 DNSP Output Cost-Share Weights with Different Data Samples—Starting Values from Preceding Results
2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024

Energy Throughput 8.44% 4.39% 4.05% 5.05% 4.22% 3.68% 5.25%
RMD 38.89% 41.05% 44.10% 47.61% 48.50% 48.39% 46.18%
Customers 17.34% 17.06% 16.99% 16.77% 17.21% 18.67% 19.56%
Circuit Length 35.33% 37.50% 34.85% 30.57% 30.07% 29.26% 29.02%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown.

Figure 3.1 DNSP Output Cost-Share Weights with Different Data Samples—Starting Values from Preceding Results
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Tables 3.7 and 3.8 present comparisons of the RMSEs for each model using the standard
starting values compared to the RMSEs obtained when the preceding estimates are used as
starting values. Table 3.7 uses the 2006-2024 sample period, and Table 3.8 uses the 2006-2023
period.

The results in Table 3.6 for the 2006-2023 and 2006-2024 data samples can be compared to
those using standard starting values. This comparison is shown in Table 3.9.

Table 3.7 RMSE by Input Demand Model, 2006-2024 data sample

Standard starting values Preceding results as starting values
DNSP x1 x2 x3 x4 x1 x2 x3 x4
1. EVO 8,986 2,209 747 39 9,586 2,209 698 39
2. AGD 58,507 6,948 4,255 1,528 58,507 6,514 4,228 1,528
3.CIT 4,198 140 239 67 3,990 140 239 67
4. END 17,649 6,201 1,788 402 17,649 6,201 2,413 402
5. ENX 20,104 3,132 4,196 679 20,104 3,308 4,248 655
6. ERG 31,743 13,280 805 426 31,842 14,372 781 413
7. ESS 49,316 8,120 1,876 743 49,316 8,120 1,815 675
8. JEN 8,777 1,530 293 106 8,636 970 293 103
9. PCR 10,993 1,314 648 86 11,672 1,314 648 86
10. SAP 15,068 1,651 695 288 14,941 1,651 720 288
11. AND 13,479 2,625 389 178 13,479 2,625 401 173
12. TND 7,740 662 160 84 7,360 662 160 84
13. UED 8,262 2,122 134 104 8,262 2,054 145 104

Table 3.8 RMSE by Input Demand Model, 2006-2023 data sample

Standard starting values Preceding results as starting values
DNSP x1 x2 x3 x4 x1 x2 x3 x4
1.EVO 9,075 2,356 341 40 9,693 2,416 341 42
2. AGD 62,310 6,708 3,971 1,346 60,264 6,708 3,971 1,346
3.CIT 4,101 140 246 68 4,101 140 229 68
4. END 18,853 6,400 1,653 402 18,192 6,400 2,113 402
5. ENX 19,999 5,992 3,150 518 19,999 3,108 3,150 518
6. ERG 25,070 43,575 781 414 25,070 14,795 781 414
7. ESS 49,582 8,120 1,874 674 49,582 8,120 1,874 717
8. JEN 8,362 859 253 89 8,732 938 254 86
9. PCR 11,802 1,357 716 83 11,802 1,357 665 86
10. SAP 15,412 1,708 729 308 15,057 1,708 729 294
11. AND 14,222 24,689 345 175 13,770 2,349 339 175
12. TND 7,300 684 165 85 7,585 684 165 85
13. UED 8,395 2,172 138 107 8,395 2,098 145 107

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown.
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Table 3.9 Comparison of Output Cost Shares with Preceding Results as Starting Values

Standard starting values Preceding results as starting values

2006-2023 2006-2024 2006-2023 2006-2024
Energy Throughput 10.79% 9.96% 3.68% 5.25%
RMD 47.83% 45.31% 48.39% 46.18%
Customers 15.23% 18.44% 18.67% 19.56%
Circuit Length 26.15% 26.29% 29.26% 29.02%
Total 100.00% 100.00% 100.00% 100.00%

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown.

The comparisons in Table 3.9 show that the method of using preceding results as starting
values produces substantially different results, with a lower weight for Energy Throughput
and higher weights for the other outputs, especially Circuit Length.

The comparisons in Tables 3.7 and 3.8 show that:

e In the 2006-2023 sample, 13 of the models have a lower RMSE, and 10 have a higher
RMSE, than when the standard starting values are used,

e In the 2006-2024 sample, 14 of the models have a lower RMSE, and 9 have a higher
RMSE, than when the standard starting values are used.

The use of the preceding estimates as starting values Jowers the average RMSE compared to
the standard starting values. On average over both the 2006-2023 sample and the 2006-2024
samples by 1.8 per cent in sample. When compared to the models using the ML starting
values, those estimated using preceding estimates as starting values produce an average RMSE
(including averaging over both sample periods) that is 1.7 per cent higher.

Hence, on the basis of average RMSE, the approach of using previously estimated parameters
as starting values is arguably superior to the standard starting values and slightly inferior to
the use of ML results as starting values. Concerning Frontier Economics’ criticism quoted at
the beginning of this section, relating to “valid estimates”, it is interesting to observe that when
the RMSEs of models using preceding results starting values (shown in Tables 3.7 and 3.8) are
compared to those using ML estimates as starting values (shown in Tables 3.2 and 3.3):

e In the 2006-2023 sample, 3 of the models that use preceding results starting values
have a lower RMSE, and 12 have a higher RMSE, than when the ML starting values
are used.

e In the 2006-2024 sample, 4 of the models that use preceding results starting values
have a lower RMSE, and 13 have a higher RMSE, than when the ML starting values
are used.

Thus, the use of ML starting values does not yield the lowest RMSE for all models. In our
view, the average RMSE for all 52 models is a better indicator of the effectiveness of a method
of choosing starting values than selecting a small number of models to highlight.
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3.3 Conclusions

This section has evaluated Frontier Economics’ approach of using parameters estimated using
Stata’s ml routines as starting values for the NLS estimation of the input demand functions
used to calculate output cost shares. The following findings are largely invariant to whether
the 2006-2023 or the 2006-2024 data samples are used:

e Out of the 52 ML models estimated (for each sample), 2 did not converge. We have
used the standard starting values in place of the unreliable ML estimates for those
models.

e When the ML-estimated parameters are used as starting values in NLS estimation,
15 of the 52 models have a lower RMSE than when standard starting values are used.
However, 2 models have a higher RMSE. Thus, the RMSE is worse for some models,
although on average (using both sample periods), the RMSE is improved by 3.3 per
cent.

e  When previously estimated parameters are used as starting values in NLS estimation,
about 12-13 of the 52 models have a higher RMSE than when ML-estimated starting
values are used. However, 3—4 models have a lower RMSE than when ML-estimated
starting values are used. Thus, several of the models estimated with ML-estimated
starting values are worse than models where previously estimated parameters are
used as starting values. However, on average, the models using ML-estimated starting
values have slightly lower RMSE than models using previously estimated parameters
as starting values (by 1.7 per cent on average over both sample periods).

Frontier Economics claimed that “Quantonomics failed to estimate the Leontief model
correctly in six instances ... the real opex models for Evoenergy and SA Power Networks, the
overhead lines model for Ergon Energy and AusNet Distribution, the underground cables
model for Ausgrid and the transformers model for TasNetworks Distribution” (SA Power
Networks, 2025: 10). This criticism is based on the observation that, when starting values
obtained from ML estimates are used, Frontier Economics found 6 models with a lower
RMSE than the equivalent models that used the standard starting values. However, as we have
seen:

e Some of the ML routines for estimating starting values failed to converge. And when
the ML estimates are used as starting values for NLS models, 2 of the models produced
a higher RMSE than the equivalent models as starting values. These issues were not
noted in the submissions.

e When the preceding estimated coefficients are used as starting values, about 3 models
are found with lower RMSE than the equivalent models that used the ML estimates as
starting values. Hence, none of the three methods examined produces the lowest
RMSE in all 52 input demand models.
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These results highlight CEPA’s point that NLS estimation produces parameters that yield a
local minimum for the sum of squared residuals, but does not reliably find a global minimum
(Peyrache, 2024:14).

A useful single metric to use when comparing the three methods considered here for setting
starting values is the average RMSE across all 52 input demand models. By this metric, the
models that use ML-estimated starting values proposed by Frontier Economics perform the
best of the methods tested.

As previously stated, the use of different methods of establishing starting values for different
DNSPs and inputs would be ad hoc. The method of establishing starting values should be
consistently applied to the models for all DNSPs and inputs. We have found that the procedure
used by Frontier Economics of first estimating parameters using Stata’s ML routine, and then
using these as starting values in the NLS estimation produced better results than the standard
starting values we used, which were previously used by Economic Insights. If the ML
estimation routine fails to converge, the standard starting values (0.001) can be used as a
fallback assumption.” We recommend that this approach be considered as a potential
improvement over the use of the standard starting values in future updates of the output
weights.

Frontier Economics also criticises the fact that many of the individual coefficients are zero, or
very close to zero, in the four input demand functions estimated for each DNSP. The reason
why they consider this to be a deficiency is not explained. The overall aim is to obtain the
average effect of output on costs for the industry. The purpose and advantages of estimating
the models separately for individual DNSPs were explained by CEPA (2024: 14), namely that
it allows a highly flexible estimation procedure. We consider these criticisms by Frontier
Economics to be mistaken.

Further, in its Stata program, Frontier Economics describes output coefficients that are
nonnegative but close to zero as monotonicity violations. This is a mistake. Monotonicity
requires only that the conditional input demand is nondecreasing in any output (Coelli et al.,
2005: 25-26). Hence, the output coefficients of the input demands must be nonnegative. An
output coefficient equal to or greater than zero is not a monotonicity violation. The squaring
of the output parameters ensures that there can be no monotonicity violations in these models.

4 Residuals Analysis and Model Fit

This section examines the residuals from the input demand models for each DNSP to identify
any estimation issues or misspecifications. The focus is primarily on the output weights
estimated with the 2006-2023 data used in the benchmarking report 2025, although we also
examine the residuals when Frontier Economics’ suggested use of alternative starting values,

° We used the absolute values of the squared parameters as starting values for the second round, although we note
that Frontier Economics generally used the estimated values (retaining negative values for starting values where
applicable) when examining the six instances with mis-estimation using the standard starting values.
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derived from maximum likelihood estimation, is adopted. We also examine the residuals
when the 2006-2024 data sample is used.

Appendix A presents the fitted values against the actual values for each of the 52 Leontief
estimations, covering the 2006-2023 and 2006-2024 periods and using the ABR25 dataset.

4.1 |dentifying Possible Outliers & Residuals Patterns

Outliers can be defined as observations with unusually large residuals, indicating that the
dependent variable is not well explained by the predictor variables. To detect outliers, the
residuals for each DNSP are first standardised. For each residual e; (for observation 7) the
ej—ég
Sg
and s is the standard deviation of residuals for DNSP g. This scales residuals relative to the

standardised residual is calculated as: z; = , where é; is the mean residual for DNSP g

distribution of residuals within each DNSP. Any observation with |z;| > 3 can be considered
a potential outlier.

Using this criterion, no observations were identified as potential outliers for any DNSP.

Boxplots are useful for inspecting the distributions of residuals and outliers. A boxplot shows
the median (line inside the box), the interquartile range or IQR (the box from the 25th to the
75th percentile), and “whiskers” that extend to the most extreme values within 1.5XIQR from
the box. Points plotted beyond the whiskers are flagged as outliers under the standard 1.5XIQR
rule, and points beyond 3XIQR are typically considered extreme outliers.

Figure 4.1 presents boxplots of the residuals for each DNSP, across the four inputs: opex,
overhead lines, underground cables and transformers, for the 2006-23 period. Note that the
vertical axis scale differs across the charts. In practice, the boxplots can be interpreted as
follows:

e In a well-specified model, residuals should be clustered around zero.!® The mean
should be close to zero, indicating that, on average, the model’s predictions are
accurate. A median (the line inside the box) that sits noticeably above or below zero
suggests systematic over- or under-prediction for that DNSP.

e Very long whiskers or a large number of outlier points suggest heavy-tailed
distributions or the presence of potential outliers.

19 Because the nonlinear input demand functions do not have intercepts, the residuals need not be centred precisely
at zero.
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Figure 4.1: Residual Distributions by DNSP (2006-2023)
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Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023.
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From Figure 4.1, we observe that:

e The residuals for most DNSPs are indeed clustered around zero. However, some
notable exceptions arise that may indicate specification issues. The most prominent
case is for ERG and AND in OH lines, where all residuals fall well below zero,

signalling systematic under-prediction.

e AGD also displays a much wider spread of residuals across all inputs except OH lines.
Broader distributions are likewise observed for ESS and ERG in real opex and
transformers, and for ENX in UG cables.

e Residuals for real opex exhibit the widest distribution across all DNSPs, followed by
OH lines. In contrast, UG cables and transformers show residuals that are more tightly
clustered around zero for all DNSPs, suggesting these outputs are generally better
explained by the model.

4.2 Residuals in the 2006-2024 dataset

Figure 4.2 presents the boxplots for the 20062024 sample. The issue observed in the ERG
and AND OH lines models, where residuals were not centred around zero, disappears when
the extended dataset is used. However, as discussed in Section 2.2, the estimated output
weights remain very similar across the two samples. This suggests that the residuals centring
problem in the two models does not materially affect the reliability of the estimated output
weights, although we note the improvement with the 2006-2024 sample.

4.3 Goodness-of-Fit

R? values of regressions are shown in Table 4.1. The first panel (EI 2006-2018) presents R?
values reported by Economic Insights in 2020. The second panel (2006—-2023) shows R? values
from the regressions used to update the output weights, and on which the index analysis in
the benchmarking report is based. The third panel (2006-2024) are the results when using the
full ABR25 dataset. Note that all these estimations use the same set of coefficient starting
values (0.001). The main observations on Table 4.1 are:

e FE12006-2018: The average R?* across the four inputs is slightly higher than in the 2006—

2023 dataset. All R? values are positive, although a few are quite small, especially for
Opex and OH lines.

e 2006-2023: The R? values are mostly positive, with the exceptions of the OH lines input
for ERG and AND, which are negative. This reinforces the problematic nature of those
two models as previously observed.

2006-2024: The average R? values are similar to those using the 2006-2023 sample, but
the issue with the OH Lines input for ERG and AND has disappeared, again showing
that the inclusion of 2024 data resolved the computational problems with those
models. The R? for EVO in the opex estimation is effectively zero but negative.
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Figure 4.2: Residual Distributions by DNSP (2006-2024)

Real Opex OH Lines
100000 20,0004
.
50,000 10,0004
L
E E ' !
LY b & + = LS B zfBded
@ [}
s o
L] .
-50,000 -10,0004
-100000 20,0001
e g £ o x 9 g 7 K & o S B e g 5 2 2 92 @9 5 5 2 2 2 8B
g 9 ¢ & §& B & 8 R & z E S T 2 ° & & § 4 8 g & z & 8
UG Cables Transformers
10,000 A
2,0004
5,000 1,000
.

5 . [ 0 = = ‘E_E' = % £ =
s o = = é = F == |§| = = = % :
' . . o
' 1,000
-5,000
-2,000 2
-10,000 -3,000

EVO
AGD
CIT
END
ENX
ERG
ESS
JEN
PCR
SAP
AND
TND
UED
EVO
AGD
CIT
END
ENX
ERG
ESS
JEN
PCR
SAP
AND
TND
UED

22



Output Index Weights

Quantonomics

QUANTITATIVE ECONOMICS

Table 4.1 R?Values Comparisons

ET12006-2018* 2006-2023** 2006-2024

Opex OH Lines UG Cables  Transfor. Opex OH Lines UG Cables  Transfor. Opex OH Lines UG Cables  Transfor.
EVO 0.143 0.925 0.975 0.990 0.018 0.853 0.962 0.985 -0.003 0.886 0.997 0.988
AGD 0.256 0.439 0.891 0.928 0.460 0.316 0.827 0.800 0.508 0.266 0.806 0.726
CIT 0.539 0.461 0.982 0.980 0.530 0.068 1.000 0.984 0.528 0.034 0.965 0.986
END 0.313 0.090 0.984 0.978 0.141 0.429 0.984 0.971 0.182 0.502 0.982 0.972
ENX 0.674 0.958 0.989 0.995 0.539 0.886 0.942 0.975 0.613 0.966 0.904 0.961
ERG 0.132 0.460 0.980 0.976 0.461 -4.778 0.947 0.957 0.189 0.373 0.949 0.959
ESS 0.088 0.962 0.865 0.985 0.127 0.940 0.800 0.853 0.083 0.940 0.825 0.850
JEN 0.738 0.711 0.989 0.976 0.162 0.845 0.993 0.980 0.079 0.572 0.992 0.973
PCR 0.408 0.682 0.949 0.997 0.488 0.852 0.975 0.997 0.561 0.873 0.981 0.997
SAP 0.816 0.713 0.990 0.975 0.689 0.693 0.967 0.962 0.731 0.727 0.972 0.966
AND 0.797 0.877 0.996 0.986 0.540 -24.129 0.997 0.971 0.582 0.677 0.996 0.974
TND 0.249 0.944 0.976 0.974 0.231 0.970 0.977 0.969 0.150 0.974 0.980 0.971
UED 0.332 0.871 0.993 0.986 0.232 0.847 0.994 0.989 0.212 0.851 0.995 0.990
AVG 0.422 0.699 0.966 0.979 0.355 0.700%*** 0.951 0.953 0.340 0.665 0.949 0.947

Note: *From Economic Insights (2020b: Appendix A). ** Using the ABR25 dataset, restricted to 2006-2023. *** Excluding the two negative R* values.
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4.4

Effect of Alternative Starting Values

This section examines the input demand model goodness-of-fit and residuals when the

coefficients from the maximum likelihood (ML) models are used as starting values. Table 4.2

reports the R? values for each DNSP and input across the different datasets, now re-estimated

using the ML coefficients as starting values.

Table 4.2 R? Values using different datasets (ML as starting values)

2006-2023 2006-2024

Opex  OH Lines UG Cables  Transfor. Opex  OH Lines UG Cables  Transfor.
EVO 0.039 0.853 0.962 0.985 0.036 0.886 0.905 0.988
AGD  0.462 0.316 0.830 0.800 0.508 0.312 0.806 0.726
CIT 0.530 0.068 0.970 0.984 0.547 0.034 0.965 0.986
END 0.147 0.429 0.984 0.971 0.182 0.502 0.982 0.972
ENX 0.539 0.965 0.942 0.975 0.613 0.966 0.904 0.962
ERG 0.461 0.354 0.947 0.957 0.189 0.373 0.949 0.959
ESS 0.127 0.940 0.800 0.853 0.083 0.940 0.825 0.864
JEN 0.162 0.845 0.993 0.980 0.118 0.843 0.992 0.973
PCR 0.488 0.852 0.977 0.997 0.563 0.873 0.981 0.997
SAP 0.703 0.693 0.967 0.963 0.735 0.727 0.972 0.966
AND  0.540 0.756 0.997 0.971 0.582 0.677 0.996 0.974
TND 0.231 0.970 0.977 0.970 0.241 0.974 0.980 0.973
UED 0.233 0.847 0.994 0.989 0.212 0.851 0.995 0.990
AVG 0.359 0.684 0.949 0.954 0.355 0.689 0.942 0.948

Note: Results were obtained using the ABR25 dataset, restricted to the relevant years as shown.

Figure 4.2 presents the boxplots of residuals associated with these models. It shows that using

the ML estimates as starting values resolves the issue of residuals not being centred around
zero for the ERG and AND OH lines regressions.

The main observations on the models that use ML starting values are:

These

2006-2023 data sample: On average, the R? values are closely aligned with those
obtained using 0.001 as the starting values. Importantly, there are no negative R?
values. Again, the issue with the OH lines input for ERG and AND has disappeared.

2006—2024 data sample: The R? values are generally consistent with those from the 2006—
2024 estimations using 0.001 as the starting value. As with that specification, no
unusual R? values are observed.

results lend support to the use of the ML estimates of coefficients as the starting values

in next estimating the nonlinear input demand models.
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Figure 4.3: Residual Distributions by DNSP (2006-2023, ML as starting values)
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Note: Results were obtained using the ABR25 dataset, restricted to 2006-2023.
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4.5 Conclusions

This section highlights that in the Leontief models restricted to 2006-2023 period, on which
the output weights used in the benchmarking report were based, two of the OH lines models
have problematic residuals that are not centred near zero. The same models have a negative
R?2. This problem is resolved by using the 2006-2024 period. Alternatively, it is resolved by
using ML-based starting values instead of the standard starting values.

The negative R? appears to have occurred because the model’s predicted values performed
worse than the simple average of the observed values. This issue seems to have arisen from
computational instability, as it was resolved when alternative starting values were used or
when one additional year of data was included in the estimation.

These results, and the results presented in section 2, tend to suggest that including the 2024
data improves the model’s performance compared with using the sample restricted to 2006-
2023 for estimating the output weights.

5 Other Issues Raised by Stakeholders

Sections 3 and 4 considered some issues raised by Frontier Economics. This section discusses
some other comments made by stakeholders.

5.1 Stakeholder Comments and our response

AusNet argued that the substantial changes in output weights estimated using the 2006-2023
sample, compared to those estimated with the 2006-2018 sample, “raise concerns about the
stability and reliability of the underlying econometric modelling” and “the model specification
and estimation methods make the estimated output weights highly sensitive to changes in
input data”. SAPN expressed similar views. Section 2 examines the sources of the changes in
output weights. Importantly, the data sample has increased from 13 to 18 observations per
regression, a roughly 40 per cent increase. And there has also been a major change in data
definitions relating to CCOs. Although it is desirable to have stability in the output weights, it
may be unrealistic to expect only minor change in these circumstances.

SAPN points to the fact that in many or most of the input demand functions, of which there
are four for each DNSP and 52 in total, some of the coefficients pertaining to outputs are zero
or close to zero. Sometimes, these models only identify a single cost driver for a particular
input and DNSP. SAPN draws the conclusion that “none of the estimated Leontief models
are reliable. Therefore, the basis for the updated output weights proposed by Quantonomics
should be rejected”.

We do not agree with this reasoning. There is no problem with coefficients taking zero values
in the individual input demand functions. As discussed in section 3.3 in response to Frontier
Economics, this is a mistaken argument. The purpose and advantages of estimating the models

26



Quantonomics
@) utput Index Weights QUANTITATIVE ECONOMICS

separately for individual DNSPs were explained by CEPA (2024: 14), namely that it allows a
highly flexible estimation procedure. The objective being to use the estimated parameters to
derive the proportionate importance of each output as a driver of each input cost, and
ultimately total cost, at the industry level. The reasonableness of this set of models needs to be
evaluated at the industry level, where it is applied to construct weights. As shown in Tables
2.8 to 2.11, at the aggregate level, each input has a different mix of cost drivers. None of the
outputs has zero effect on costs for any input. SAPN has not indicated how much of the cost
of each input it expects should be determined by each output, so it is not possible to conclude
whether those results are consistent or inconsistent with its expectations.

Various modelling suggestions are made by submitters:

(@) EVO notes that the input demand models “do not account for time-varying
inefficiency”. SAPN concurs that they “do not allow for inefficiency as a possible
explanator of DNSPs’ inputs ... beyond a smooth linear trend”. SAPN therefore
recognises that the time-trend component of the model could capture time-varying
inefficiency. Given the presence of the time trend, which will capture the average rate
of all systematic time-varying effects, EVO and SAPN have not made clear how the
models do not allow for time-varying inefficiency.

(b) EVO states that the models omit “some potentially relevant output variables (such as
for consumer energy resources)”. SAPN also criticises the output specification for
failing to include “the delivery of CER services”. AGD notes that “demand-sides
initiatives and CER integration ... may appear as output reductions ...”. Whilst it is
desirable to account for these increasingly important services, the AER investigated
this issue in 2023 and concluded that at the present time there is insufficient data
include export services in the benchmarking framework, but it “may reconsider this
position in the future when more robust export services expenditure data is available”
(AER, 2023: 8).

(c) EVO argues that the models should be estimated using panel regressions, rather than
by individual DNSP. “As the models are not estimated as panel regressions, all data
variation is derived exclusively from variation over time (i.e., there is no cross-sectional
variation), which results in poorer model fit.” While this observation is not
unreasonable, such an approach would reduce the flexibility of the modelling, noting
that CEPA regarded this as an advantage of the Economic Insights method.

(d) AND proposes that smoothing techniques be used to minimise abrupt changes in
output weights due to model sensitivity. We have addressed the reasons for changes in
output weights. Note that for the last four samples from 2006-2021 to 2006-2024 there
have not been major changes in the output weights. Regarding smoothing techniques,
while nothing specific was proposed, there is a wide range of methods, and such an
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approach may introduce ad hoc use of such methods, and subjective judgements. If that
were the case, it would not be suitable.

(e) SAPN suggests that an alternative method of averaging the results across DNSPs be
considered. This question is explored in section 5.2.

Some have expressed views supportive of the output weights analysis. JEN stated:

We recognise the trade-offs between model complexity and statistical significance. Given
the current data limitations, we agree with Quantonomics’ view to retain the existing
estimation approach. It offers regulatory certainty and consistency, and the results are
broadly aligned with those suggested by CEPA’s independent review.

Overall, there may be merit in further investigation of methods of estimating output weights,
although we note that CEPA investigated the output weights methodologies in 2024 in its
independent review and associated industry consultation. Hence, there is no presumption that
a consistently better method could readily be found.

Differing views were expressed on the frequency of updating output weights. JEN expressed
support in “revisiting the output weight estimation approach in five years, when a larger data
sample becomes available”. ENX/ERG “recommend that the AER adopt an ongoing
(annual) update process for non-reliability output weights”. There are pros and cons to each
suggestion. One benefit of an annual updating process is that it would reduce the likelthood
of substantial data revisions accumulating over time and causing a large impact when the
output weights are updated. On the other hand, updating every year may be less amenable to
making year-to-year comparisons of changes in productivity and rankings on a like-for-like
basis.

5.2 Alternative Methods of Averaging of Output Cost Shares

According to SA Power Networks:

A further limitation of the current method is that the industry non-reliability output
weights are calculated based on the ‘total cost shares’ across the 13 DNSPs, which causes
the results to be dominated by the largest DNSPs. This happens because the largest DNSPs
contribute the most to the total estimated industry cost. There is little justification for
assuming that the relationship between inputs and outputs for the largest DNSPs should
dictate the output weights applied to all other DNSPs. By contrast, the econometric
benchmarking models used by the AER to assess the efficiency of base year opex
effectively weight all DNSPs equally, which in our view is more appropriate. (SA Power
Networks, 2025: 8)

It is correct that in Economic Insights’ method, the industry output cost shares are a weighted
average of the output cost shares of the DNSPs, where the weights are their shares to total
industry cost. This method has a clear internal logic. The method is designed to fully allocate
each DNSP’s cost of using each input to each of the four outputs. The cost attributed to one

28



Quantonomics
@) utput Index Weights QUANTITATIVE ECONOMICS

output can then be aggregated over inputs and over DNSPs to obtain the share of that output
in total industry cost.

Whilst noting the logic of the Economic Insights method, given the substantial changes in the
estimated output weights compared to those previously estimated using the 2006-2018 data
sample, it is of interest to consider whether an alternative averaging method yields different
weights or patterns of change. The alternative examined in this section is to firstly calculate
the output cost shares for each input for each DNSP using Economic Insights’ method, and
then to average the cost shares of each output over DNSPs using a simple (arithmetic) average
of the cost shares of the DNSPs instead of a weighted average.

The results of this approach (using standard starting values for parameters in the NLS models)
are shown in Table 5.1 and Figure 5.1. The corresponding results under weighted averaging
are presented in Table 2.2 and Figure 2.1 in section 2. The arithmetic averaging of the output
cost shares results for the 2006-2023 data sample show that Energy Throughput has a much
higher estimated cost share, namely 15.9 per cent compared to 10.8 per cent using the
weighted average cost shares. RMD has a much lower cost share of 38.3 per cent, compared
to 47.8 per cent using the weighted average cost shares. Customer numbers has a cost share of
15.8 per cent, similar to the 15.2 per cent weighted average cost share. Circuit length has a
share of 30.0 per cent, which is higher than its 26.2 per cent weighted average cost share.

Figure 5.1 shows a similarity of trends over different data samples. The key changes are: (a) a
substantial increase in the cost share of RMD between the 2006-2018 and 2006-2023 data
samples; (b) a substantial decrease in the cost share of Circuit Length between the same two
data samples; and (c) Energy Throughput also has a significant increase in its average cost
share. Overall, the nature of the changes on the cost shares between the 2006-2018 and 2006-
2023 data samples are broadly directionally similar to the weighted average method.
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Table 5.1 DNSP Simple Average Output Cost-Share Weights with Different Data Samples

2006-2018 2006-2019 2006-2020 2006-2021 2006-2022 2006-2023 2006-2024
Energy Throughput 11.9% 10.1% 14.2% 18.8% 15.5% 15.9% 17.0%
RMD 27.1% 30.6% 32.0% 35.9% 35.3% 38.3% 35.8%
Customers 16.8% 16.2% 15.8% 14.8% 14.7% 15.8% 18.3%
Circuit Length 44.2% 43.1% 38.0% 30.5% 34.5% 30.0% 28.9%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Note: Results were obtained using the ABR25 dataset, restricted as shown.
Figure 5.1 DNSP Simple Output Cost-Share Weights with Different Data Samples
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6 Conclusions

This memo has examined the drivers of changes in the output weights and addressed the
criticisms raised by DNSPs regarding model specification.

As discussed in Section 2, most of the changes in the output weights were driven by the
inclusion of additional data, with revisions to data definitions also playing an important role.
Specifically, the sharp increase in the cost share of RMD reflects the combined effect of data
revisions and the addition of new data, both of which substantially increase its weight. The
modest increase in the cost share of Energy Throughput is due to largely offsetting effects
between data revisions and new data. The sharp decline in the cost share of Circuit Length is
mainly explained by the additional data, which reduced the estimated influence of this output
on input demands.

The largest changes in output weights, particularly for RMD and Circuit Length, occurred
with the inclusion of the 2020 and 2021 data. With the additional data, the relationship
between Opex and Circuit Length weakened and the importance of Circuit Length as a driver
of OH Lines and UG Cables declined (perhaps reflecting changes (increases) in line
capacities). Costs were increasingly attributed to RMD across all inputs. At the same time, the
sharp fall in capital input prices in 2020 and 2021 raised the share of Opex in total costs. Since
RMD accounts for a relatively high share of Opex costs while Circuit Length accounts for a
relatively low share, these effects accentuated the overall shift in cost shares away from Circuit
Length and towards RMD.

In Section 3, we consider Frontier Economics’ proposal to use alternative starting values,
obtained by adding an extra step to the estimation process. We recognise the merit of their
approach and recommend it as a potential improvement. However, we also highlight its
limitations, including convergence failures in two of the 52 models. For these cases, we suggest
reverting to the standard starting value of 0.001. While the approach of using ML-derived
starting values produces similar weights for Circuit Length and Customer Numbers and lower
weights for Energy Throughput, it further amplifies the increase in the RMD weight.

In Section 4, we review the residuals and model fit of the tested models. For ERG and AND
in the overhead lines estimation, residuals were not centred, and the R? values were highly
negative, indicating computational issues. These problems were resolved by either including
the 2024 data or by adopting the ML-based starting values suggested by Frontier Economics.
As the inclusion of the 2024 data does not materially affect the output weights, we conclude
that these issues do not undermine the weight estimates. Apart from these exceptions, the R?
values are broadly consistent across all datasets and under the ML approach, with lower R?
values for opex input demand functions, moderate values for overhead lines, and very high
values for underground cables and transformers.
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In Section 5, we consider the remaining stakeholder comments. An important concern of
several DNSPs is the size of the changes in the updated output weights, compared to those
estimated by Economic Insights in 2020. While stability in output weights is desirable, given
the substantial additional data and data revisions since that previous study, it may be
unrealistic to expect only minor changes. The results presented in section 2 for successive
results using the data samples from 2006-2021 to 2006-2024 do not support the contention of
some stakeholders that the Leontief method suffers from instability of estimated output
weights. In response to some of the detailed criticisms of specific input demand models, we
observe that the models were designed to provide flexibility and to estimate weights at the
industry level rather than for individual DNSPs.

We have addressed SAPN'’s claim that the output weights are disproportionately influenced
by the largest DNSPs by testing an alternative averaging method. We do not agree with the
logic of SAPN’s approach, given the interest in industry cost shares. However, for
completeness, we tested SAPN'’s alternative method. This resulted in a much higher estimated
cost share for Energy Throughput, a lower share for RMD, a similar share for Customer
Numbers, and a higher share for Circuit Length. Nevertheless, the overall trends in output
weight changes were broadly directionally similar to those using the Economic Insights
method.

In summary, while there may be scope to refine the models used to estimate output weights,
the evidence shows that the material changes in weights are primarily driven by data inclusion
and revisions. The observed changes in output weights are not an artefact of estimation
shortcomings, and potential improvements in model specification do not alter the materiality
of these results.
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Appendix A Actual Values versus Fitted Values, 2006-2023 Data

Figures A.1 to A.13 show the actual values (red dots) and the fitted or predicted values (black
line) from the output weight estimations using the 2006—2023 period and ABR25 dataset
applied in the Benchmarking Report 2025. The key observations are:

e Underground cables and transformers: The fitted values generally align closely with
the actual values. This is consistent with the boxplot analysis, where the medians of
the residuals for these variables are near zero.

e Opex: The alignment between actual and predicted values is weak overall, and this
may reflect a model misspecification. While addressing this is beyond the scope of the
current analysis, it is worth noting that the model only incorporates a linear trend, even
though the opex trend commonly shifts mid-sample due to efficiency improvements.
Allowing for a quadratic trend could be a useful refinement.

e Overhead lines: The alignment is strong for some DNSPs (EVO, ENX, ESS and TND)
but noticeably weak for others (AGD, CIT and END). More importantly, for two
DNSPs (ERG and AND), the fitted line does not intersect the cloud of actual values,
suggesting computational issues.
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Figure A.1: EVO — Actual vs Predicted Values (2006-2023)
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Figure A.2: AGD— Actual vs Predicted Values (2006-2023)
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Figure A1.3: CIT— Actual vs Predicted Values (2006-2023)
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Figure Al.4: END— Actual vs Predicted Values (2006-2023)
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Figure A1.5: ENX— Actual vs Predicted Values (2006-2023)
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Figure A1.6: ERG— Actual vs Predicted Values (2006-2023)
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Figure A1.7: ESS— Actual vs Predicted Values (2006-2023)
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Figure A1.8: JEN— Actual vs Predicted Values (2006-2023)
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Figure A1.9: PCR— Actual vs Predicted Values (2006-2023)

OH Lines

Real Opex

-€20e

-ecoc

-i2og

-0coe

r6l0c

8102

A4

4

rsloc

-¥L0c

reLoc

rcloz

-0z

roLog

-600¢

-800¢

r100¢

-900¢

445000+

440000

435000+
430000

-€20e

rc¢coc

LA 4

~0c0c

r6L0c

8102

1102

ralog

rSgLoc

r¥L0c

reloc

reloc

Fhoz

roloeg

6002

« -800C

1002

~900¢

170000

160000

1500004

140000

130000 "
1200004

Year

Year

Transformers

UG Cables

€20

RAAV4

I 1e0e

I-0¢02

F6L0C

8102

4102

r9L0g

FGloZ

Frloc

FeLoe

Fclog

FLog

roloz

600

- 8002

2002

9002

12000

11000+

10000

9000

8000

€20
444
- Leoc
0202
F6L0Z
8102
A4
r9Loc
FSlog
FrL0C
F€L0g
Felog
FLlog
Foloz
6002
- 8002
2002

I 900¢

25000

20000

15000

5000

Year

Year

42



Quantonomics

QUANTITATIVE ECONOMICS

Output Index Weights

Figure A1.10: SAP— Actual vs Predicted Values (2006-2023)
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Figure A1.11: AND— Actual vs Predicted Values (2006-2023)
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Figure A1.12: TND— Actual vs Predicted Values (2006-2023)
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Figure A1.13: UED— Actual vs Predicted Values (2006-2023)
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