
 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Price volatility in Australia's wholesale electricity markets, particularly in the National Electricity 
Market (NEM), is deeply damaging across political, economic, social, and technological 
dimensions. The high frequency and magnitude of price swings create uncertainty, which 
directly impacts affordability, competition, and sustainability for all major stakeholders. 

 

    Political Impacts 

Volatile wholesale prices create a challenging and often reactive political environment. 

• Policy Instability: Sudden price spikes and threats to supply reliability lead to 
government intervention (e.g., price caps, market suspension, targeted subsidies), 
which can undermine long-term market certainty and investment signals. 

• Public Pressure and Trust: High and volatile household and business energy bills 
generate significant public dissatisfaction and political pressure, damaging consumer 
trust in the market, regulators, and energy policy directions. 

• Decarbonisation Risk: Political infighting and frequent policy changes around the 
energy transition (e.g., the pace of coal retirement and renewable energy targets) are 
often exacerbated by volatility, slowing down the orderly and efficient shift to 
sustainable energy. 

  



 
 

 

   Economic Impacts 

The core damage of volatility is economic, impacting the financial viability and investment 
decisions of market participants. 

• Users (Businesses & Households): 

o Affordability: High wholesale costs flow through to higher retail prices, 
increasing the cost of living and doing business. This is especially punitive for 
energy-intensive industries and low-income households, increasing energy debt. 

• Retailers: 

o Financial Risk: Retailers typically sell power on fixed or capped price contracts 
but must buy from the volatile wholesale spot market. Volatility makes hedging 
risk more expensive and complex, threatening the financial viability of smaller, 
asset-light retailers and reducing competition. Retailer failures lead to 
increased market concentration. 

• Generators: 

o Investment Uncertainty: Volatility makes revenue streams unpredictable. 
Dispatchable (firming) generators like batteries and gas plants rely on price 
spikes for revenue, but extreme volatility makes it difficult to model and finance 
new long-term investments. Renewable generators face revenue risk from 
periods of negative pricing. 

• Transmission/Distribution (Networks): 

o Investment Difficulty: While their revenues are largely regulated and stable, 
volatility increases the risk premium for investors in new network infrastructure 
(like interconnectors and Renewable Energy Zones), which are crucial for grid 
stability and transporting cheaper renewable power. 

 

                                                   Social Impacts 

Volatility directly translates into social inequity and stress. 

• Affordability and Equity: Increased prices disproportionately affect vulnerable and 
low-income users, leading to energy poverty, disconnection risk, and mental stress. 

• Business Viability: Volatile costs can force energy-intensive businesses to reduce 
operations or close down, leading to job losses and regional economic instability. 

• Consumer Choice: The complexity and opacity of volatile wholesale costs make it 
harder for consumers to compare offers and engage effectively with the market, 
potentially leading to poorer outcomes and higher bills. 

 



 
      Technological Impacts 

Volatility complicates the required technological transition towards a reliable, sustainable grid. 

• Storage and Firming: High volatility is intended to incentivise investment in fast-
response, firming technologies (like batteries and pumped hydro) that can arbitrage 
price differences. However, extreme and unpredictable volatility makes the business 
case for these long-term assets harder to lock in, slowing down their essential 
deployment. 

• Sustainability Goal Hindrance: The inability to manage volatility effectively can lead to 
inadequate investment in transmission and storage, which is needed to integrate 
large-scale, intermittent renewables (solar and wind), ultimately hindering the 
sustainability goal of deep decarbonisation. 

• System Reliability: Volatility often spikes during periods of supply scarcity (e.g., 
extreme weather events, generator breakdowns). This stress tests the system, 
increasing the risk of technical failure, market intervention, or blackouts. 

  



 
 

Stakeholder Group Key Damage from Volatility 
Impact on Affordability, Competition 
& Sustainability 

Users (Customers) 
Higher, unpredictable bills and 
debt risk. 

Affordability severely compromised. 

Retailers 
Higher hedging costs, 
increased financial failure risk. 

Competition reduced, higher final 
prices. 

Generators 
Unpredictable long-term 
revenue, difficulty financing 
new projects. 

Hinders sustainability transition and 
long-term reliability. 

Networks 
Increased risk premium on 
essential transmission 
investment. 

Delays in infrastructure critical for 
sustainability and lower long-term 
costs. 

Political/Regulators 
Policy inconsistency, public 
loss of trust, reactive 
intervention. 

Undermines stability needed for all 
three—affordability, competition, and 
sustainability. 

  



 
 

The Recommended Method: GARCH Modelling 

The GARCH model is superior to simple measures like Standard Deviation because it accounts 
for a key feature of electricity markets: volatility clustering. This means large price changes 
(positive or negative) are likely to be followed by more large price changes, and small changes 
by small changes. 

1. Data Preparation and Baseline (Returns) 

The first step is to transform the raw spot price data (e.g., NEM 5-minute or 30-minute interval 
prices) into logarithmic returns ($r_t$). This standardizes the data and makes it stationary, 
which is necessary for time-series analysis. 

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$ 

Where $P_t$ is the price at time $t$. The mean of these returns can be modelled using an 
Autoregressive Moving Average (ARMA) model, but the focus is on the variance. 

2. The GARCH(1,1) Model 

The GARCH(1,1) model is the most common and robust specification for measuring and 
forecasting volatility. It separates the total variance into a long-run mean variance, past squared 
errors (ARCH term), and past conditional variance (GARCH term). 

The model consists of two equations: 

A. Mean Equation 

The mean return at time $t$ ($\mu_t$) is modelled: 

$$r_t = \mu_t + \epsilon_t$$ 

Where $\epsilon_t$ is the error term, and $\mu_t$ is often assumed to be constant or zero, but 
can be an ARMA process. 

B. Variance Equation (The Volatility Measure) 

The conditional variance ($\sigma_t^2$) at time $t$ is the measure of volatility. This is estimated 
simultaneously with the mean equation: 

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$ 

• $\sigma_t^2$ (Conditional Variance): This is the baseline volatility measure. It 
represents the expected price volatility for the next period, given all current information. 

• $\omega$ (Constant Term): The long-run, stable component of variance (the "long-run 
average volatility"). 

• $\alpha$ (ARCH Term): Measures the impact of news (i.e., the error squared, 
$\epsilon_{t-1}^2$) from the previous period on current volatility. A high $\alpha$ means 
volatility responds quickly to market shocks. 



 
• $\beta$ (GARCH Term): Measures the persistence of volatility; how much of the 

previous period's forecasted variance ($\sigma_{t-1}^2$) carries over to the current 
period. A high $\beta$ indicates that volatility shocks take a long time to decay. 

3. Baseline Establishment 

The estimated $\sigma_t^2$ series generated by the GARCH model provides the statistically 
sound, time-varying baseline volatility. 

• Measuring Volatility: The current $\sigma_t$ (the conditional standard deviation) is the 
direct measure of volatility for a given period. 

• Against Which to Measure: Any deviation from the expected path of the GARCH-
forecasted $\sigma_t$ can be flagged as an unusual or extreme volatility event. The 
estimated parameters ($\omega, \alpha, \beta$) define the market's structural 
relationship with volatility, against which the impact of new policies, major network 
events, or generator retirements can be measured. 

 

      Why GARCH is Best for Electricity Markets 

Feature Importance to Electricity Markets 

Volatility 
Clustering 

Price spikes are concentrated due to generation outages, network 
constraints, or high demand events that often persist for hours/days. 
GARCH specifically models this clustering. 

Mean Reversion 
The NEM spot price is highly mean-reverting (it rarely stays at 
$\$15,500/\text{MWh}$ or $-\$1,000/\text{MWh}$ for long). The $\omega$ 
term in GARCH captures this tendency toward a long-run stable variance. 

Forecasting Power 
The GARCH model is a powerful tool for forecasting the expected range 
of prices in the short term, which is crucial for retailers' hedging 
decisions and generators' bidding strategies. 

Asymmetry 
(EGARCH/GJR-
GARCH) 

Variants like the Exponential GARCH (EGARCH) are useful because 
electricity markets exhibit leverage effects: negative shocks (e.g., a large 
generation unit trip) may increase future volatility more than positive 
shocks of the same magnitude (e.g., a sudden drop in demand). 

 


