

# Business Case - Capital Expenditure less than \$500,000

T33 LV03 Pit Business Case Number BC220 AA23-27

## 1 Project Approvals

| TABLE 1: BUSINESS CASE – PROJECT APPROVALS |            |                       |                                                              |  |  |  |
|--------------------------------------------|------------|-----------------------|--------------------------------------------------------------|--|--|--|
| Upda                                       | ated By    | Adam Newbury          | Asset Lifecycle Specialist, Asset Management                 |  |  |  |
| Cost                                       | Updated By | Prasoon Premachandran | Victorian Team Lead Project Delivery, Engineering & Planning |  |  |  |
| Revi                                       | ewed By    | Nicholas King         | Senior Mechanical Engineer, Engineering & Planning           |  |  |  |
| Арри                                       | roved By   | Daniel Tucci          | Victorian Asset Manager, Asset Management                    |  |  |  |

# 2 Background and Project Need

Project resubmitted - due to reprioritisation

It is standard APA practice to have all bypass valves installed above ground; however both bypass valves for LV03 on T33 pipeline are currently buried and cannot be accessed for maintenance and/or inspection (per T33-22 and T33-08-05).

A small pit currently exists around LV03 for limited access. A new larger pit will be constructed to current standards to allow safe and unrestricted access for LV03 and both bypass valves, which will reduce workplace hazards related to confined space entry and exit.

These bypass valves permit effective isolation of T33 pipeline as well as protecting LV03 from being re-opened from a high pressure differential event. Without the bypass valves being in a functional and accessible state, the capacity to protect LV03 and isolate T33 pipeline is compromised.

## 3 Risk Assessment

| TABLE 2: RISK RATING        |            |  |  |  |
|-----------------------------|------------|--|--|--|
| Risk Area                   | Risk Level |  |  |  |
| Health and Safety           | Moderate   |  |  |  |
| Environment                 | Negligible |  |  |  |
| Operational                 | Moderate   |  |  |  |
| Customers                   | Moderate   |  |  |  |
| Reputation                  | Moderate   |  |  |  |
| Compliance                  | Moderate   |  |  |  |
| Financial                   | Low        |  |  |  |
| Final Untreated Risk Rating | Moderate   |  |  |  |

## Options

4



### 4.1 Option 1 – Do Nothing

- Leave as is only LV03 is maintained without any maintenance performed on both bypass valves.
- The risks involved with doing nothing or deferring the project remains moderate.
- If the bypass valves fail due to no maintenance, full isolation may not be achievable.
- The 'Do Nothing' option is not considered a viable alternative, due to the severity of the untreated risks including
  inability to efficiently isolate during an emergency.

### 4.2 Proposed Solution

#### 4.2.1 What is the Proposed Solution?

• Remove existing smaller pit around LV03 and install a single larger pit around all 3 x valves with adequate clearance and meeting current relevant standards.

#### 4.2.2 Consistency with the National Gas Rules

Consistent with the requirements of Rule 79 of the National Gas Rules, APA considers that the capital expenditure is:

- Prudent The expenditure is necessary in order to maintain and improve the safety of services and maintain the integrity of services to customers and personnel and is of a nature that a prudent service provider would incur because without the expenditure the capacity to protect LV03 and isolate T33 pipeline is compromised.
- Efficient The field work will be carried out by a suitably qualified external contractor in a safe and cost
  effective manner. The expenditure will be undertaken consistent with the APA procurement policy. The
  expenditure can therefore be considered consistent with the expenditure that a prudent service provider
  acting efficiently would incur.
- Consistent with accepted and good industry practice Addressing HSE risks associated confined space entry and exit, including maintainability and accessibility of LV03 as good industry practice. In addition the reduction of risk to as low as reasonably practicable in a manner that balances cost and risk is consistent with Australian Standard AS2885.
- To achieve the lowest sustainable cost of delivering pipeline services The sustainable delivery of services includes reducing risks to as low as reasonably practicable and maintaining reliability of supply.

### 4.2.3 Forecast Cost Breakdown

| TABLE 3: PROJECT COST ESTIMATE |           |  |  |  |
|--------------------------------|-----------|--|--|--|
| Total                          |           |  |  |  |
| Internal Labour                | \$65,960  |  |  |  |
| Materials                      | \$9,670   |  |  |  |
| Contracted Labour              | \$155,230 |  |  |  |



| Other Costs | \$100,000 |  |
|-------------|-----------|--|
| Total       | \$330,860 |  |

# 5 Acronyms

| Acronym | Definition/Description                                                                                                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| AEMO    | Australian Energy Market Operator                                                                                                   |
| AGA     | Australian gas association – Type B compliance governing body                                                                       |
| API     | American Petroleum Institute – publisher of standards                                                                               |
| CHAZOP  | Control system HAZOP – study of the control system functions to identify logic vulnerabilities                                      |
| ESD     | Emergency shutdown – control system-initiated shutdown designed to prevent incident escalation if operating parameters are breached |
| ESV     | Energy Safe Victoria                                                                                                                |
| HAZOP   | Hazard and operability study                                                                                                        |
| НМІ     | Human machine interface                                                                                                             |
| ILI     | Inline inspection – pipeline internal inspection                                                                                    |
| OEM     | Original Equipment Manufacturer                                                                                                     |
| RA      | Risk Assessment                                                                                                                     |
| RBI     | Risk Based Inspection – a process used to prioritise maintenance or inspection activities based on risk of failure.                 |
| SIL     | Safety Integrity Level - an assessment used to rank control systems by their ability to fail safely                                 |
| SMS     | Safety Management Study                                                                                                             |
| VTS     | Victorian Transmission System                                                                                                       |