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Methodology 

This methodology was used to develop accurate forecasts of Spatial Maximum Demand for 

summer and winter within the two networks of Energy Queensland. The three key objectives 

in establishing the spatial maximum demand forecasting process include establishing: 

 robust, reliable, and repeatable techniques 

 transparent methods 

 econometrically based models, that is, normalised for weather, and utilising externally 

verifiable data as a source. 

Methods 

The bottom-up spatial forecast methodology allows the capture of underlying characteristics 

of the areas serviced by individual substations. This approach allows for variations across 

the diverse environments based on observed and planned local developments (local 

population growth, housing developments etc.) that lead to different growth patterns across 

the different areas. Although substation level demand forecasts are based on inherently 

“noisy” load metering data compared to the aggregated system level, it is necessary to 

capture the growth rates of individual substations relative to one another.  

This paper notes that forecasting at the “spatial” zone substation level presents the following 

issues: 

 time series need to be adjusted for network transfers and switching events 

 greater degrees of randomness which is not easily explained 

 difficulties incorporating the impacts of macro level drivers 

ACIL Tasman (2010) argue that these factors mean that while it is possible to get the 

relativities between individual zone substations reasonably correct, the aggregation of 

individual zone substation forecasts is likely to result in forecasts that deviate substantially 

from those that would be derived from a top-down system level forecast. The trimming 

process allows examination and amelioration of these variations. 

Implementation of spatial maximum demand forecasting is a complex and difficult exercise. 

A high level of sophistication and data is necessary to establish a methodology that satisfies 

operational requirements and addresses the issues raised by external and independent 

consultants. In response to these earlier recommendations, Ergon Energy and Energex 

adopted and developed the Substation Investment Forecasting Tool (SIFT).  

SIFT Process 

SIFT produces a long term, 10-year forecast of zone substation demand. Any adjustments 

made to the extrapolated maximum demand accommodate both confirmed and anticipated 

developments as well as other known local factors. From this, bulk supply and other external 

stakeholder forecasts, and connection point demand forecasts are prepared by aggregating 

the loss-adjusted forecast of the attached zone substations. 

After performing a reconciliation between a separately created top-level system forecast and 

the aggregated zone substation forecasts, a trim factor is applied selectively to bring the 

forecast results, as near as is practicable, in line with measured results.  
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Currently SIFT requires both maximum demand growth rates and temperature corrected 

demand information to complete the forecast and these are provided as major parameters 

within the SIFT automation process.  

 

These include: 

 Probability of Exceedance (PoE) data, 10PoE, 50PoE, and 90PoE for each network 

element. 

 Growth data, data that describes the predicted growth at the zone substation level over 

the life of the forecast. 

Temperature dependence 

The relationship between winter daily maximum demand and temperature has a different 

relationship to that expected in summer. 

As winter tends to be characterised by colder temperatures, demand increases as 

temperatures decline.  

Alternately, summer tends to be characterised by warmer temperatures, demand increases 

as temperatures increase.  

Calendar days 

Treatment for determining demand modelling currently includes the public holidays using 

separate variables. 

Model method details 

The following describes the model of both summer and winter models at the spatial level. 

The methodology based on multivariate analysis uses multiple linear regressions. This 

involves fitting a multi-dimensional linear function through the daily summer and winter 

maximum demand data to minimise the total squared errors between the fitted function and 

the observed data. The model structure needs to pick up the impacts of the underlying 

drivers. The summer and winter maximum demand model takes the base form: 

Equation 1 

Load = c + β1 x Max temp + β2 x Min temp + e 

This equation explains the season daily maximum demand by a constant term together with 

the drivers of daily maximum and minimum temperature. Temperature related demand 

variation is captured by inclusion of the daily maximum and minimum temperatures. Any 

variations in the daily peaks not captured by temperature are soaked up by the error term 

(e). 

Temperature is the main driver for the current model, as other econometric and demographic 

details are either not available or too volatile to be included as a robust set of inputs into the 

model. 
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The specification above can vary depending on what data is included in the regression 

model; for example – if weekends and public holidays are included but not accounted for 

explicitly, the lower peak demands associated with them will diminish the precision of the 

model in its accuracy. To avoid this occurring, the effect of the lower demand on weekends 

is resolved through the inclusion of specific variables which take a value of ‘1’ on that 

particular day and ‘0’ on other days. The specific variable will shift the regression line 

downwards on weekends and holidays to reflect the lower levels of peak demand on those 

days. 

Weather normalisation (or weather correction) is a key aspect of the spatial demand 

forecasting methodology. Electricity demand is highly sensitive to weather due to 

temperature sensitive loads. High temperature conditions in summer result in high peak 

demands, while cold temperatures in winter result in peak demands. Any comparison of 

historical electricity loads over time requires adjustment of these loads to standardised 

weather conditions. In this model, actual demand is standardised to 10%, 50%, and 90% 

Probability of Exceedance levels (PoE).  

Monte Carlo approach 

The maximum demand data set is used in the model containing drivers. A forecast is 

possible only with knowledge of future temperatures. As it is not possible to generate an 

accurate forecast when the period is greater than a few weeks, the technique applied is one 

using a distribution of historical temperatures.  

The forecast is determined using all previous temperatures. This is now a distribution in 

future maximum demand values, due to each past temperature being a contributor. 

As this is now a distribution in future maximum demand values (due to each past 

temperature being a contributor) then calculation of best estimate of the distribution, if 

symmetric, or the 50 PoE value, is from the distribution to provide the forecast. 

This method of generating a maximum demand distribution is the Monte Carlo simulation 

and is one of the standard mechanisms for temperature correction. 

Current and historical points in time provide the ‘In sample’ 50 PoE values for maximum 

demand needed for a continuous PoE time series for each season. 

Development of the summer and winter models 

The basis for the choice of model parameter is derived from of a broad range of potential key 

drivers representing exogenous (external variables) variables that influence the dependent 

maximum demand. Consequently, a sense of the likely size and direction of model 

coefficients can be determined. Model validation is required and any validation should 

confirm established relationships fit with known theory. 

Model Validation 

The main methods of model validation include: 

 assessment of the goodness of fit of the regression 

 statistical significance of the explanatory variables 
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A statistically significant result is one which, if an observed effect were to occur, would be 

sufficiently large that it would rarely occur by chance. Each estimated coefficient in the 

regression models has an associated t-statistic and associated p value1. 

One poorly understood key issue is that a statistically significant result does not necessarily 

imply that the inclusion of a particular variable will have a sizeable impact on the model 

outcomes.  

Firstly, and often in large sample sizes, the statistically significant results identified are of 

little or no economic consequence. Secondly, a statistically significant result also has some 

chance of not being significant. At the 5% significance level, 1 in 20 significant results will in 

fact be insignificant. Thirdly, the longevity of the variable requires judgement to ensure the 

robustness of its significance and relevance over the forecasted timeframes.  

The most commonly used measure of the goodness of fit of the regression model to the 

observed data is R2. An R2 coefficient of determination is a statistical measure of how well, 

the regression approximates the real data points. An R2 of 1.0 indicates that the regression 

perfectly fits the data, while the rating of an R2 above 0.7 is 'reasonably good.' 

Other measures include analysis of the residuals for complete specification review.2 

However, for reasons of stationarity simplicity and in-sample PoE calculation, only R2 and p 

values were analysed. 

                                                
1
 If the estimated p value is less than 0.01 then that coefficient is statistically significant at the 1% significance level. A p-value 

that is less than 0.05 is significant at the 5% level of significance. The lower the observed p value on a coefficient the greater 

the probability that a meaningful relationship exists between the dependent variable and the explanatory variable concerned. 
2
 Akaike Information Criterion (AIC statistic) together with the Schwartz Criterion (SC). Both the Akaike Information Criterion 

(AIC) and Schwartz Criterion (SC) are model selection tools designed to choose between sets of potential models. The criteria 

penalises models which have poorer R2 which is measured by the sum of squared errors and also includes a penalty for each 

additional explanatory variable included in the model. Out of several competing models the one with the lowest AIC and SC are 

considered to be the best. Other tests include heteroskedasticity, serial correlation and multiple colinearity 
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The forecast process chart describes the high-level process flows for developing summer 

and winter spatial maximum demand forecasts. 

The process for developing summer and winter forecasts are identical. The variation 

between summer and winter forecasts arises from using different data sets for demand and 

temperature as well as minor changes in the algorithm to account for different calendar days 

and holiday periods.  

The process uses a series of external data sources and system forecast loaded into SIFT 

along with a range of other network data. SIFT is used to develop the spatial forecast. 
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Data 

The main criteria used to determine data series suitability for use in the modelling 

methodology include: 

 reputability of the data source 

 reliability of the data source 

 completeness (no or few missing values) 

 suitably long time series 

 accuracy of the data 

 continued availability into the future. 

 

Maximum Demand 

An effective methodology requires daily observation of both summer and winter maximum 

demand for a number of years in order to capture a series of data that shows the potential 

range of output, with variations in input. However, because we are considering a ‘stationary’ 

multivariate approach each season has its own set of coefficients that are determined for 

each temperature variable (where several seasons are used, non-stationary effects are 

accounted for using rebasing techniques). Metering data provides the demand data used in 

the process. 

Weather 

The modelling process requires the use of a suitable weather series to relate daily 

movements in Spatial Maximum Demand to weather variation. Currently the models use only 

daily minimum and maximum temperature data. Other weather data elements may be 

utilised in future. 

The methodology uses weather data both as part of the regression model to relate spatial 

maximum demand to weather drivers, as well as part of the long run weather series used to 

derive the 10% PoE and 50% PoE demands. 

The source of the weather time series is the Bureau of Meteorology (BOM)3. A nearby 

weather station provides source data for each zone substation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
3
 Weather data was sourced from the Bureau of Meteorology, Climate Data Online website. 

http://www.bom.gov.au/climate/data/. 

http://www.bom.gov.au/climate/data/
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The following derivation and equations used to determine the coefficients of the demand 

equation and the coefficients of the regression used to determine the degree of fit between 

the model and the actual demand and temperature statistics. 

Coefficient determinations of the multivariate peak demand equation 

Writing the multivariate equation more generally as 
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We can use standard minimisation of residuals to obtain methods to evaluate the 

multivariate coefficients by the following: 

Obtaining the squared of the residual  
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Rearranging becomes 
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In matrix form, we can represent this as 
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Which is of the form 
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The Coefficients are given by 
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So in summary, to evaluate the coefficients of the maximum demand given by 

       ∑ (     )    
 

   
  

 

The coefficients are given by 

 

Regression Coefficients 

The regression coefficients determine the degree of ‘fit’ of the model to the data. We 

proceed as follows: 

The actual spatial peak demand is given by 
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And the spatial peak demand model is 
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Then R-squared is given by 
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And 

The variance is given by 
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Annex A - SIFT Meshing Calculations 

The following diagram contains the definition of the SIFT meshing calculation:

 

BSP reconciled coincident 

MW FC
= ∑unreconciled coincident ZS MW x Reconciliation Factor x BSP MW LF

BSP reconciled coincident 

uncompensated MVAR FC
= (∑(unreconciled coincident uncompensated ZS MVAR x Reconciliation Factor x BSP 

MVAR LF)) – (∑FC ZS reconciled coincident compensation)

[If the first part of thes 

equations = 0, then use 1]

Radial Network

Forecast Equations

Loss Factors (LF)

Energex or Ergon adjusted coincident MW0
System MW Loss Factor =

∑ ZS adjusted coincident MW0

System MVAR Loss Factor =

Energex or Ergon adjusted MVAR0+ ∑(BSP compensation 

MVAR0) +  ∑(ZS compensation MVAR0)

∑ (adjusted coincident uncompensated ZS MVAR0)

Adjusted coincident BSP MW0
BSP MW Loss Factor =

∑ attached coincident adjusted ZS MW0

BSP MVAR Loss Factor =

Adjusted coincident uncompensated BSP MVAR0 + 

∑(attached coincident compensation ZS year 0)

∑ (adjusted coincident uncompensated ZS MVAR0)

BSP reconciled peak MW 

FC
=

BSP reconciled coincidence MWx

BSP MW CF

BSP reconciled peak 

uncompensated MVAR FC
= (∑(unreconciled coincident uncompensated ZS 

MVAR x Reconciliation Factor x BSP MVAR LF))  – (∑FC ZS reconciled 

coincident compensation)BSP MW CF
)(

ZS reconciled coincident 

MW FC
= ZS coincident MWx x reconciliation factor

ZS reconciled peak MW 

FC
=

ZS coincident MWx x reconciliation factor

ZS CF

ZS reconciled coincident 

MVAR FC
= ZS coincident FC MVAR x reconciliation factor

ZS reconciled peak MVAR 

FC
=

Radial Network Coincidence Factors (CF)

ZS unreconciled coincident MWx / ZS CF√ ZS PPF

2

)(
ZS unreconciled coincident MWx 

ZS CF

2

)( – reconciliation 

factor( ) x

( (ZS Adjusted peak MW)
2
 + (ZS Adjusted UnCompensated peak MVAR)

2 )√

ZS Adjusted peak MW( )Avg

Peak Power Factor 

(ZS PF) for 4 

values 

(SD,SN,WD,WN)

=
 for each period over all 

available load history

ZS unreconciled peak 

MVAR FC
=

ZS unreconciled coincident MWx / ZS CF√ ZS PPF

2

)(
ZS unreconciled coincident MWx

ZS CF

2

)( – ( )

(sum (ZS unreconciled coincidence MWx) / sum (ZS unreconciled peak MWx) )

(BSP peak MW0 / sum (ZS  peak MW0) )

Bulk Supply Point CF year X MW 

(year 1-10)
= 

Bulk Supply Point CF year 0 MW
BSP coincident MW0

BSP peak MW0
= 

Reconciliation (Trim) Factors

System 

Reconciliation Factor
=

(system MW FC - ∑ ZSu unreconciled coincidence MWx x system MW LF)

∑ ZSr unreconciled coincidence MWx x system MW LF

Peak Power Factors

Abbreviations

BSP – bulk supply point

FC – forecast

‘L’ – local

LF – loss factor

MW – mega watt

MW0 – mega watt at year 

zero

MWx – mega watt at 

‘S’ – system

Reconciled – unreconciled 

value x reconciliation factor

MVAR0 - MVAR at year zero

MVARx – MVAR at forecast 

point

ZS – zone substation

ZSr – zone substation with a 

set “trim” flag

ZSu – zone substation 

without a set “trim” flag
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Mesh Area Forecasting Equations
Abbreviations

BSP – bulk supply point

FC – forecast

LF – loss factor

MBSPr – mesh bulk supply 

with a set “trim” flag

MBSPu – mesh bulk supply 

without a set “trim” flag

MW – mega watt

MW0 – mega watt at year 

zero

MWx – mega watt at forecast 

point

Reconciled – unreconciled 

value X reconciliation factor

MVAR0 - MVAR at year zero

MVARx – MVAR at forecast 

point

SS – switching station

ZS – zone substation

ZSr – zone substation with a 

set “trim” flag

ZSu – zone substation 

without a set “trim” flag

Mesh Area Loss Factors (LF)

∑ attached coincident adjusted MBSP MW0Area MW 

Loss Factor
=

∑ attached coincident adjusted ZS MW0

Area MVAR 

Loss Factor
=

∑(attached adjusted coincident uncompensated MBSP MVAR0) + 

∑(attached coincident compensation ZS year 0)

∑ (adjusted coincident uncompensated ZS MVAR0)

System Reconciliation (Trim) Factors

System 

Reconciliation Factor
=

(system MW FC - ∑ ZSu unreconciled coincident MWx x system MW LF)

∑ ZSr unreconciled coincident MWx x system MW LF

Area reconciled 

coincident MW FC
= [(∑ZSr unreconciled coincident MW x System Reconciliation Factor) + (∑ZSu unreconciled coincident MW)] 

x Area MW LF

Area reconciled 

coincident uncompensated 

MVAR FC

= (∑(unreconciled coincident uncompensated ZS MVAR x System Reconciliation Factor x 

Area MVAR LF)) – (∑FC ZS & SS reconciled coincident compensation)

[If the first part of these 

equations = 0, then use 1]

Area Forecast Equations

[Compensation is the 

sum of the secondary 

capacitors at the 

connected mesh zone 

substations and 

switching stations]

Area reconciled 

coincident compensated 

MVAR FC

= (Area reconciled coincident 

uncompensated MVARx)
-    ∑(MBSP secondary compensation + ZS & SS primary compensation)( )

Area 

Reconciliation Factor
=

(∑MBSPr unreconciled coincident MWx) x System Reconciliation Factor

Area reconciled coincident MWx- ∑ MBSPu unreconciled coincident MWx

Area Reconciliation Factor

Area unreconciled 

coincident MW FC
= ∑ZSr&u unreconciled coincident MW x Area MW LF
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