

2023-27 Transmission Revenue Reset

PUBLIC

Submitted: 29 October 2020

Document number	NA
Issue number	1
Status	Approved
Approver	Herman De Beer
Date of approval	28/07/2020

ISSUE/AMENDMENT STATUS

Issue Number	Date	Description	Author	Approved by
1	28/07/2020	Approved	D Erzetic-Graziani	Herman De Beer

Disclaimer

This document belongs to AusNet Services and may or may not contain all available information on the subject matter this document purports to address.

The information contained in this document is subject to review and AusNet Services may amend this document at any time. Amendments will be indicated in the Amendment Table, but AusNet Services does not undertake to keep this document up to date.

To the maximum extent permitted by law, AusNet Services makes no representation or warranty (express or implied) as to the accuracy, reliability, or completeness of the information contained in this document, or its suitability for any intended purpose. AusNet Services (which, for the purposes of this disclaimer, includes all of its related bodies corporate, its officers, employees, contractors, agents and consultants, and those of its related bodies corporate) shall have no liability for any loss or damage (be it direct or indirect, including liability by reason of negligence or negligent misstatement) for any statements, opinions, information or matter (expressed or implied) arising out of, contained in, or derived from, or for any omissions from, the information in this document.

Contact

This document is the responsibility of AusNet Services.

Please contact the indicated owner of the document with any inquiries.

Ross Stewart AusNet Services Level 31, 2 Southbank Boulevard Melbourne Victoria 3006 Ph: (03) 9695 6000

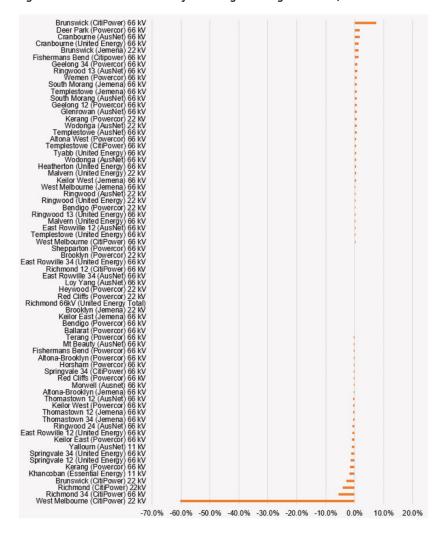
Table of Contents

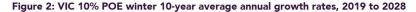
1	Introduction4
2	Forecasts available to AEMO as at 25 June 20194

1 Introduction

The purpose of this document is to provide the forecasts of load growth relied upon to derive the capital expenditure forecasts and the methodology used for developing those forecasts of load growth.

All information is prepared by AEMO and accessible via their website. Published material is in line with clause 5.20.6(b) of the National Electricity Rules, as part of its national transmission planner (NTP) functions.


2 Forecasts available to AEMO as at 25 June 2019


2019 connection point results and insights

Refer to the Dynamic interface (8.96 MB, xls) for detailed information on individual connection points.

Figures 1 and 2 show the summer and winter change rates based on the compound average rate of changes over the 10-year forecasting period in Victoria. Some direct-connect industrial loads are excluded due to confidentiality.

Figure 1: VIC 10% POE summer 10-year average annual growth rates, 2019-20 to 2028-29

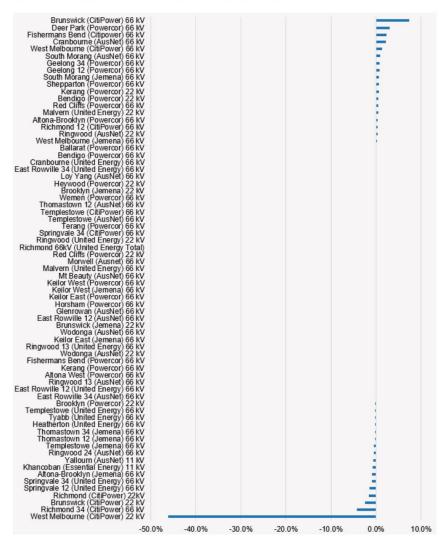


Table 1 lists the drivers of large changes (2% or greater) in connection points. Major industrial loads are excluded due to confidentiality.

Table 1: Drivers at connection points with change rates increasing (decreasing) more than 2%

Season	Forecast maximum demand increase greater than 2%	Forecast maximum demand decrease greater than 2%
Summer	Brunswick (CitiPower) 66 kV:	West Melbourne (CitiPower) 22
	Expected block loads	kV: The load will gradually
	received from West	transfer to Brunswick 66 kV and
	Melbourne 66 kV, West	West Melbourne 66 kV over the
	Melbourne 22 kV in 2021,	next three years, leading to a
	and Richmond 66 kV in 2022.	substantial negative growth and expected closure in 2024.
	Deer Park (Powercor) 66 kV:	
	Expected future block load	Richmond 34 (CitiPower) 66 kV:
	received from Altona West	Expected block load transfer to
	66kV in 2020 and 2021 as	Brunswick 66 kV in 2022.
	well as new local	
	commercial/industrial loads.	Brunswick (CitiPower) 22kV:
		Expected load transfer to West
	Cranbourne (AusNet) 66 kV:	Melbourne 66 kV in 2021.
	Expected local	
	developments.	Richmond (CitiPower) 22kV:
		Expected load transfer to
	Fishermans Bend (CitiPower)	Richmond 66 kV in 2021 and
	66 kV: Expected new	load reduction following
	commercial loads.	completion of the Metro Rail
		tunnel in 2024.

Winter

Brunswick (CitiPower) 66 kV: Expected block loads received from West Melbourne 66 kV, West Melbourne 22 kV in 2021, and Richmond 66 kV in 2022.

Deer Park (Powercor) 66 kV: Expected future block load received from Altona West 66kV in 2020 and 2021 as well as new local commercial/industrial loads.

Cranbourne (AusNet) 66 kV: Expected local developments.

Fishermans Bend (CitiPower) 66 kV: Expected new commercial loads.

West Melbourne (CitiPower) 22 kV: The load will gradually transfer to Brunswick 66 kV and West Melbourne 66 kV over the next three years, leading to a substantial negative growth and expected closure in 2024.

Richmond 34 (CitiPower) 66 kV: Expected block load transfer to Brunswick 66 kV in 2022.

Brunswick (CitiPower) 22kV: Expected load transfer to West Melbourne 66 kV in 2021.

Richmond (CitiPower) 22kV: Expected load transfer to Richmond 66 kV in 2021 and load reduction following completion of the Metro Rail tunnel in 2024.

Supplementary information

Dynamic interface	An Excel workbook with the following information for each transmission connection point: • Historical and forecast maximum demand (MD), including 10% POE and 50% POE, for active power. • Coincident and non-coincident values. • High-level commentary. • The option to export all forecast and historical data.
Reactive power system forecast spreadsheet	Separate spreadsheet for reactive power forecasts at each transmission connection point, providing complementary information for power system studies. Please note the current reactive power forecasting methodology is based off historical power factors at time of connection point maximum demand, and does not yet take into account a potential change in future power factors as a result of increased PV generation penetration. AEMO hopes to expand on this methodology in the future.
Interactive planning map	The interactive map complements AEMO's planning publications to enhance readability and clarity. The map contains various layers, including layers displaying forecasts and planning information.
Transmission Connection Point Forecasting Methodology 2016	The current AEMO transmission connection point forecasting methodology outlines the process through which the forecasts were developed.