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Memorandum 

From: Tim Coelli and Denis Lawrence  Date: 28 February 2019  

To: AER Opex Team 

Subject: Appropriate specification for the inclusion of the share of underground cables 

variable in opex cost function models – technical issues 

Before proceeding to technical modelling issues, we will first consider the reasons why 

underground cables are generally less costly to operate and maintain than overhead lines. The 

two primary areas of difference are vegetation management and general opex. Emergency 

management costs would also be impacted.  

There are virtually zero vegetation management costs associated with underground assets. 

Given that vegetation management represents 30 per cent or more of opex for many DNSPs, 

this can represent a significant opex reduction.  

Underground assets are very difficult to inspect and maintain. As such, the strategy for most 

distribution assets is to run to failure, or to rely on predicative failure analysis to drive 

replacement. On the other hand, overhead assets are inspected on a very regular basis. Most 

overhead lines are patrolled at least once a year (especially in bushfire prone areas) and most 

poles are inspected in 3–yearly intervals. Wooden pole inspection represents a material 

component of most opex budgets.  

Emergency management costs are also reduced for underground assets as they are less 

exposed to contact with third parties including trees, animals, wind–borne debris and 

lightning. When a fault does occur on an underground asset, the repair costs can be significant 

but large repairs to underground assets are often treated as capex rather than opex.  

The opex cost function economic benchmarking models used in Economic Insights (2014, 

2018) include a shareugc variable defined as ‘the share of underground cable length in total 

line and cable length’ to account for the fact that underground lines are expected to be less 

costly to maintain relative to above ground lines for the reasons outlined above. This 

shareugc variable is included in log form in the opex cost function models and is expected to 

have an estimated coefficient with a negative sign. 

NERA (2018, p.22) question the logic behind including this variable in log form and instead 

argue that it should be included in linear form in the model.  Their main argument against the 

log form is summarised as follows: 

‘For example, consider two hypothetical DNSPs, each with 100km of total circuit 

length. DNSP A has 10km underground and 90km overhead, while DNSP B has 

50km underground and 50km overhead. 

‘Both DNSPs propose to underground 1km of overhead line, increasing their 

underground share by 1 percentage point each. For both DNSPs, this would result 
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in opex savings associated with reduced maintenance and vegetation management 

on 1km of network, an equal savings for both networks. 

‘However, according to the AER’s approach, DNSP A has increased its 

underground share by 10 per cent (1km undergrounded divided by existing 10km 

undergrounded), while DNSP B has only increased its underground share by 2 per 

cent (1 new km underground divided by existing 50km underground). The AER’s 

model thus assumes that DNSP A will be able to achieve a 1.6 per cent reduction 

in opex, while DNSP B will only be able to achieve a 0.32 per cent reduction in 

opex.’ 

This argument has some superficial attraction.  However, the assertion that converting one 

kilometre of overhead line to underground line should result in equal savings for any 

particular kilometre of line can also be challenged.  This assertion is unlikely to be correct as 

the proportion of underground lines changes for a particular DNSP.  For example, in the 

absence of legislative restrictions it is likely that a DNSP will identify those parts of its 

overhead network which are most costly to maintain and make them a priority for conversion 

to underground network, as the opportunity arises (eg as overhead lines near the end of their 

lifespan).  Hence, the first kilometre of line put underground is likely to produce larger opex 

savings than the next kilometre and so on.  For example, a DNSP would most likely target 

those parts of its overhead network with large amounts of vegetation, higher probabilities of 

lightning strikes, older infrastructure or otherwise problematic outage histories and put them 

at the top of its priority list for new undergrounding.  This is the classic ‘low hanging fruit’ 

argument, where there is diminishing marginal benefit (ie reduced marginal cost savings) 

from each additional km of line converted to underground. 

On the other hand, it may be that much of the change in shareugc over the past decade in 

Australia has involved mostly greenfield rather than brownfield development. While each 

state has different regulations in terms of where an overhead line is acceptable and where not, 

in general all jurisdictions require new residential areas to be underground. These represent 

the greatest proportion of underground growth in the NEM. Public sentiment and 

requirements for public consultation may also represent ‘soft’ drivers for undergrounding. 

The time and cost associated with negotiating an overhead line in a built–up area may be so 

material as to provide an incentive for the DNSP to avoid the process altogether.  

Thus, if the second of the above effects predominates, one could argue that an econometric 

model that provides estimates of cost savings per km of line undergrounded which do not 

vary substantially across sample observations may be preferable.  At face value, the NERA 

argument may be seen to provide support for shareugc to be included in a linear form, 

however our analysis below suggests otherwise when all factors are taken into account. 

In this memo we use a number of empirical methods to investigate the relative merits of 

including the shareugc variable in log form versus in linear form in the opex cost function 

model.  Given that the dependant variable (opex) is in log form, we refer to these two options 

as ‘log–log’ and ‘log–lin’, respectively. 

The two models may be defined as follows.  First the log–log model is given by: 
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and then the log–lin model is given by: 

 

where the  denote the three output variables of customer numbers (custnum), circuit length 

(circlen) and ratcheted maximum demand (rmdemand), t is a time trend and the betas are 

unknown parameters to be estimated.   

Note that shareugc=ugc/circlen where ugc is the underground circuit length. 

In this memo we investigate the relative merits of these two alternative models by conducting 

the following two exercises: 

1. We derive expressions for elasticities and marginal effects for the log–log and log–lin 

models and then investigate the degree to which these measures actually differ across 

the two models using sample data on the different DNSPs.  

2. We use statistical criteria to attempt to distinguish between the two alternatives.  This 

involves the use of non–nested hypothesis tests and also model selection criteria. 

1.  Elasticities and marginal effects 

The log–log and log–lin models imply different elasticities and different marginal effects for 

both shareugc and for ugc.  The fact that the models involve logs and ratios means that these 

measures are not always easy to identify at first glance.  

Elasticities measure the percentage change in one variable when there is a one per cent 

change in another variable. In this case we are looking at the percentage change in costs 

resulting from a one per cent change in the share of underground itself (for the log–log case) 

or a one percentage point change in the value of this share (for the log–lin case). 

Marginal effects (or marginal products), on the other hand, measure the change in the dollar 

value of costs when there is a one kilometre change in the length of underground cables.  

We now derive these elasticities and marginal products.  To simplify our algebra, we define  

 

so that we can then simplify the above two model expressions to obtain: 

 

for the log–log model and 

 

for the log–lin model. 
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The marginal effect of a 1km change in underground circuit (ugc) on opex is of particular 

interest because it provides a tangible measure that can be easily interpreted.  First, consider 

the log–log model: 

 

 

  

  

where . 

The elasticity can be shown to be the partial derivatives in logs: 

 

and hence the marginal effect is: 

. 

This process can be repeated for elasticities and marginal effects with respect to shareugc, 

where we obtain: 

 

 

Furthermore, in the NERA example above they define a measure which is neither an elasticity 

nor a marginal effect.  It is the percentage change in opex resulting from a one unit change in 

shareugc, which we will call ‘pchange’.  This is a kind of hybrid mix of these two measures 

and is calculated as the elasticity divided by shareugc: 

 

Next, we repeat the above derivations for the case of log–lin model: 

 

 

 

 

The elasticity is then defined as: 
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This process can be repeated for elasticities and marginal effects with respect to shareugc, 

where we obtain: 

 

 

Furthermore, noting that pchange is equivalent to the elasticity divided by shareugc we 

obtain: 

. 

We summarise these various derived measures in the following table: 

Table 1:  Summary of Derived Formulas 

Measure: log–log log–lin 

ugc elasticity   

ugc marginal effect 
  

shareugc elasticity   

shareugc marginal effect 
 

 

pchange 
 

 

 

The first thing we note is that the pchange formulae in Table 1 agree with the example given 

by NERA.  That is, the log–lin model has a constant pchange value while the log–log model 

has a value that varies inversely with shareugc.  In their example shareugc varies from 10% 

to 50% across the two example DNSPs and hence the value of pchange varies by a factor of 5 

– from 0.32 to 1.60 (for the log–log model when assuming an estimated elasticity of –0.16).   

This appears to be a large difference.  However, one must keep in mind that pchange and the 

ugc marginal effect are not the same.  Hence if we wish to know the actual opex savings (in 

dollars) resulting from converting one kilometre of overground circuit to underground circuit 

we need to calculate the ugc marginal effects.   

The wording in the NERA example is not precise, but one could interpret it as implying that 

since pchange is constant across DNSPs A and B, then the marginal effects are also constant.  

Their example assumes the same circlen of 100kms across the two example DNSPs but it is 

incorrect to assume that they would also have the same opex values, because opex varies with 

shareugc, as is defined in the log–lin econometric model.  For example, in our estimated SFA 

log–lin model reported below, the coefficient of shareugc is –0.35, which implies that opex 
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will decrease as shareugc increases, all else held constant.  Hence the ugc marginal effect will 

not be the same across the two example DNSPs, as one might incorrectly infer from the 

NERA example. This is because the NERA analysis fails to take account of the fact that two 

DNSPs that are otherwise identical but which have different shares of underground will also 

have different opex levels for the reasons outlined at the start of this memo. That is, the 

DNSP that has the higher share of underground will have a lower level of opex because it 

does not incur as much vegetation management and inspection costs as the other DNSP.  

We now conduct an empirical exercise to investigate this issue.  

In our analysis we estimate the Cobb–Douglas (CD) opex cost functions using Stochastic 

Frontier Analysis (SFA) and Least Squares Econometric (LSE) methods as described in 

Economic Insights (2014). We use these methods to estimate a model containing the 

shareugc variable in log form (log–log) and also another model with it in linear form (log–

lin).  The data set used is that described in Economic Insights (2018) which includes the most 

recent data from 2017 and involves a total of 804 observations. 

The Stata computer output for four CD models are reproduced in Tables A1 to A4 in 

Appendix A.1 

The four estimated CD models are: 

1. SFA log–log 

2. SFA log–lin 

3. LSE log–log 

4. LSE log–lin 

From Tables A1 to A4 we see that the estimated coefficients of the ln(shareugc) or shareugc 

variables are: 

1. SFA log–log   

2. SFA log–lin   

3. LSE log–log   

4. LSE log–lin   

The Australian DNSP data (within the total sample data set of 804 observations) involves 13 

Australian DNSPs observed over 12 years, from 2006 to 2017.  We evaluate the ugc 

elasticities, marginal effects and pchange for the 13 Australian DNSPs in the most recent year 

available (2017).  These results are presented in Tables A9 and A10 in Appendix A. 

The formulae used for the elasticities, marginal effects and pchange are outlined in Table 1 

above.  Note that in calculating the elasticities we define opex as predicted opex rather than 

observed opex (this is done so that the point of calculation lies on the fitted cost function).2   

First, we discuss the SFA estimates in Table A9.  The table includes values of the base data 

for each DNSP in 2017 (opex, custnum, etc.) and has been sorted by custnum/circlen because 

                                                 
1 Stata output for the LSETLG log-log and log-lin regressions are presented in Tables A5 and A6, respectively. 

For convenience, subsequent analysis concentrates on CD results. 
2 Note that the LSE model was converted to a frontier model by using the intercept estimate from the most 

efficient DNSP (#9) as the global intercept.  This provides opex predictions for each DNSP that reflect “efficient 

opex” instead of “inefficient opex”, which is more consistent with the SFA model results. 
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this density factor appears to be the main driver of differences in ugc marginal effects across 

the observations for the log–lin model (more on this later).  We begin by observing that the 

log–log elasticity is constant across all observations, as expected.  This estimate is –0.15, 

indicating that a 1 percent increase in ugc results in a 0.15 percent reduction in opex, all else 

held constant.  The elasticity in the log–lin models varies across the different data points, 

from a minimum of –0.02 percent (for DNSP #7 when shareugc is 0.05) to a maximum of –

0.20 percent (for DNSP #1 when shareugc is 0.56), with a median value of –0.09 percent (for 

DNSP #13 when shareugc is at its median of 0.25).  Note that this median value of –0.09 is 

less than the estimated elasticity of –0.15 in the log–log model.   

The pchange measures in the log–lin model are constant across observations as expected, 

with a value of –0.35.  The pchange values vary for the log–log model, from a maximum of –

3.31 percent (for DNSP #7 when shareugc is 0.05) to a minimum of –0.27 percent (for DNSP 

#1 when shareugc is 0.56), with a median value of –0.61 percent (for DNSP #13 when 

shareugc is 0.25). 

These pchange differences appear to be very large. However, in terms of practical 

information, the estimated ugc marginal effects are much more useful measures.  These 

measures are observed to vary across observations for both the log–log and log–lin models.  

The marginal effect estimates for the log–log models are mostly larger than those in the log–

lin model.  For example, the marginal effect estimates for DNSP #13 (which has the median 

shareugc value of 0.25 and hence is marked in yellow) are –4.31 for log–log versus –2.59 for 

the log–lin.  That is, approximately $4,310 per kilometre versus $2,590 per kilometre, 

respectively.   

A few important points need to be made regarding these marginal effects estimates.  First, 

they are clearly not constant across DNSPs in the log–lin model, as may have been implied by 

the NERA example.  Second, the marginal effects in the log–lin model vary from –0.40 to –

3.37, or by more than 800%, while those in the log–log model vary from –1.28 to –4.31, or by 

less than 400%.  Thus, the log–lin model produces more variation in estimated marginal 

effects rather than less.  Third, the log–lin marginal effects appear to be increasing as density 

(the ratio of custnum/circlen) increases, which is not surprising given that opex per unit of 

circlen increases by over 800% as density increases across the sample data. 

As noted earlier, the colour yellow is used to mark the DNSP with the median shareugc in 

Table A9.  In addition to this we have marked DNSP #3 (shareugc=0.50) with green and 

DNSP #12 (shareugc=0.11) with blue, because these two DNSPs have the most similar 

shareugc ratios to those in the NERA example (0.50 and 0.10).  The differences in log–log 

pchange measures are approximately as described in the NERA example, varying from –0.30 

to –1.35, a ratio of roughly 5.  However, what is of particular interest is that the ugc marginal 

effects for these two DNSPs are not that far apart, being –2.83 and –3.31, respectively.  This 

shows that the log–log model is actually better behaved than the NERA example may 

superficially indicate. 

The estimates of elasticities and marginal effects and pchange for the LSE models are 

reported in Table A10.  The LSE estimates follow a similar pattern to the SFA estimates, 

except that they are generally larger and also the log–log and log–lin estimates are generally 

closer together.  The elasticities at the median shareugc are –0.18 and –0.16 for log–log and 
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log–lin, respectively, while the marginal effects at the median are –5.23 and –4.70 for log–log 

and log–lin, respectively.  Again, we observe that these marginal effects are not that far apart. 

Overall, we conclude that if the degree of stability of ugc marginal effects measures is the 

metric via which we are to select a model, the log–log model would be preferred on this basis.  

This is contrary to the conclusion made by NERA on the basis of their superficial example, 

which, by focusing on their pchange measure, has neglected to take into account the degree to 

which opex varies with shareugc in the econometric model, and the corresponding effect that 

this has on the ugc marginal effects measures. 

2.   Statistical criteria 

In this exercise we carry out a number of statistical tests which examine which of the two 

alternative specifications (ie log–log versus log–lin) provides the better fit to the actual DNSP 

data. We use a ‘non–nested’ testing procedure to attempt to choose between the log–log and 

log–lin model options. We cannot use a standard ‘nested’ testing procedure because we 

cannot express one model as a restricted version of the other model.  That is, we cannot ‘nest’ 

one model within the other. 

Here we follow the non–nested ‘F–test’ procedure described in Kennedy (1998, p.89) and 

Maddala (1989, p.445).  However, since we are only interested in one regressor variable, this 

test can be equivalently and more simply conducted with a t–test.   

The procedure is as follows.  We first specify the two competing models which have different 

sets of explanatory variables.   

The log–log model can be approximately expressed as: 

Model 1:     

The log–lin model can be approximately expressed as: 

Model 2:     

We then construct an artificial comprehensive model which has the two competing models 

embedded in it: 

Model C:     

We test the null hypothesis of 

H1: Model 1 (log–log)  versus the alternate hypothesis of 

HC: Model C 

and also test the null hypothesis of  

H2: Model 2 (log–lin)  versus the alternate hypothesis of 

HC: Model C 

The decision process is then as follows: 

If both null hypotheses are not rejected or both are rejected then neither model is 

preferred 
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If H1 is not rejected and H2 is rejected then Model 1 is preferred  

If H1 is rejected and H2 is not rejected then Model 2 is preferred. 

Model C has been estimated using both SFA and LSE methods and the results are reported in 

Tables A7 and A8 in Appendix A.   

Given that SFA is estimated using Maximum Likelihood (MLE) methods, finite sample F–

tests and t–tests are not applicable, but large–sample tests, such as Likelihood ratio tests 

(using the Chi–square distribution) and asymptotic t–tests (using the Standard Normal 

distribution) can be used instead.   

For the case of the LSE models, we will also be using the Standard Normal distribution to 

obtain critical values for the t–tests because when sample size (and hence degrees of freedom) 

is very large (here the sample size is 804) the t–distribution approximates the Standard 

Normal distribution.  This is why statistical tables rarely report t–distribution critical values 

for degrees of freedom larger than 100. 

Critical values for a 2–tailed test using the Standard Normal distribution are 1.645, 1.960, and 

2.326, for the 10 per cent, 5 per cent and 1 per cent significance levels, respectively. 

Firstly, let us consider the SFA results from Table A7:3   

The t–statistic for ShareUGC is 1.22 therefore we do not reject H1. 

The t–statistic for ln(ShareUGC) is –3.89 therefore we do reject H2. 

Hence, we conclude that Model 1 (log–log) is preferred using this test. 

Sometimes the estimated standard errors and hence t–ratios can be poorly approximated due 

to the iterative nature of the MLE method used in SFA.  Hence, as a check we can repeat this 

testing procedure using a likelihood ratio test which may be more reliable.   

The likelihood ratio (LR) test statistic is calculated as the negative of twice the difference 

between the log likelihood function (LLF) values under the null and alternative hypotheses, 

and has a Chi–square distribution with degrees of freedom equal to the number of restrictions 

being tested (in our case just one restriction per test). 

From the computer printouts in the tables in Appendix A we see that the LLF values for the 

three models are: 

Model 1 (log–log):   LLF1=554.68 

Model 2 (log–lin):   LLF2=547.89 

Model C (comp):        LLFC=555.42 

Critical values for the Chi–square distribution with one degree of freedom are 2.71, 3.84 and 

6.63 for the 10 per cent, 5 per cent and 1 per cent significance levels, respectively. 

Calculating the LR test statistics we obtain: 

LR1 = –2(LLF1–LLFC) = 1.45 therefore we do not reject H1. 

LR2 = –2(LLF2–LLFC) = 13.58 therefore we do reject H2. 

                                                 
3 Note that in the computer output, the variable z represents ShareUGC and lz represents ln(ShareUGC). 
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Hence, we conclude that Model 1 (log–log) is again preferred using this test. 

We now repeat these non–nested tests for the case of the LSE models.  These models do not 

produce LLF values and hence we will focus our attention on the t–tests.  From the computer 

printout of Model C in Table A8 we obtain: 

The t–statistic for ShareUGC is –0.92 therefore we do not reject H1. 

The t–statistic for ln(ShareUGC) is –3.67 therefore we do reject H2    

Hence, we again conclude that Model 1 (log–log) is preferred using this test. 

In addition to conducting non–nested tests one can also use model selection criteria to attempt 

to discriminate between non–nested models.  Two commonly used criteria are the Akaike 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC) which are defined 

as:4 

 AIC = –2(LLF)+2k 

and 

 BIC = –2(LLF)+ln(n)k, 

where k is the number of parameters estimated and n is the sample size. 

The AIC is an estimator of the relative quality of statistical models for a given set of data. It is 

founded on information theory. When a statistical model is used to represent the process that 

generated the data, the representation will almost never be exact – some information will be 

lost by using the model to represent the process. The AIC estimates the relative amount of 

information lost by a given model. The less information a model loses, the higher the quality 

of that model. The BIC is related to the AIC but includes a larger penalty for overfitting the 

model to the data. 

Smaller values of the AIC and BIC are preferred.  Since both Model 1 and Model 2 have the 

same numbers of parameters and use the same sample size we can simply compare the LLF 

values across the 2 models and prefer the one with the higher LLF value.  As noted above, for 

the SFA models we obtained values of LLF1=554.68 and LLF2=547.89 for Models 1 and 2, 

respectively, and hence once again Model 1 (log–log) is preferred on this basis.5 

Conclusion 

In summary, the log–log model currently used in the AER’s economic benchmarking work 

provides a better statistical fit to the data and so is preferred on the basis of a range of model 

selection tests reported in section 2 above. Furthermore, from the analysis provided in section 

1 of this memo, the log–log model also appears to produce more stable measures of ugc 

marginal effects across the sample data.  Hence, we conclude that on the basis of our analysis, 

the log–log model is preferred and should be retained.  

                                                 
4 Refer to Statacorp (2013) manual. 
5 Note that the LSE models are estimated using the xtpcse command in Stata which does not produce a LLF 

value and hence the AIC and BIC cannot be calculated for the LSE models. 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Information_theory
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3. Alternative ways of including undergrounding in the rate of change 

Endeavour Energy (2018, p.22) argues that overhead lines and underground cables should be 

included as separate outputs in the rate of change rather than the AER (2018) proposal to 

include circuit length as an output and the share of undergrounding as part of the productivity 

factor. In this section we look at alternative ways in which undergrounding can be included in 

the rate of change. 

The argument advanced by Endeavour Energy (2018, p.22) is as follows: 

‘Currently, circuit line length is one of the factors used to calculate the real output 

growth trend in the AER’s base–step–trend opex model. Arguably, this output 

growth factor may overstate the impact of circuit line length growth on opex if it 

is calculated based on a historical proportion of undergrounding that is not 

maintained in the future. … 

‘If there is any deficiency in this measure it should be addressed directly rather 

than through a productivity factor. The most logical approach would be to split 

the circuit line length factor between overhead and underground with different 

elasticities.’ 

To assess the argument advanced by Endeavour Energy, it is necessary to examine the log–

log opex cost function formulas outlined above. We start by rearranging the opex cost 

function formula as follows: 

 )ln()ln()ln( 1 shareugcTLopex ZTL  ++=  

where ty tii

i

 ++= 
=

)ln(
2

1

01 , the yi are the outputs other than circuit length and TL is 

total circuit length. 

The opex cost function above can be rewritten as: 

 )/ln()ln()ln( 1 TLugcTLopex ZTL  ++=  

where ugc is the circuit length of underground cables. This can be further expressed as 

follows: 

 ))ln()(ln()ln()ln( 1 TLugcTLopex ZTL −++=   

since the logarithm of a ratio is equivalent to the difference between the logarithms of the 

numerator and denominator. Rearranging terms we obtain: 

 )ln()ln()()ln( 1 ugcTLopex ZZTL  +−+=  

This shows that our current opex cost function specification can be rearranged to have 2 lines 

outputs (total length and underground length) and no OEF variable and it will produce the 

same result as our current specification with only one line output and the share of 

underground as an OEF variable. Similarly, the extent of undergrounding can be allowed for 

in either the output component of the rate of change or in the productivity component and it 

will produce the same result.  
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The estimational equivalence of these approaches is demonstrated in tables 2 and 3. 

Table 2:  SFACD estimates, one line output and one OEF variable, 2012–2017 

Variable Coefficient Standard error t–ratio 

ln(Custnum) 0.708 0.096 7.350 

ln(CircLen) 0.168 0.052 3.210 

ln(RMDemand) 0.124 0.086 1.440 

ln(ShareUGC) –0.113 0.049 –2.290 

Year 0.015 0.003 5.690 

Country dummy variables:    

    New Zealand 0.068 0.103 0.660 

    Ontario 0.316 0.094 3.370 

Constant –21.176 5.396 –3.920 

Variance parameters:    

    Mu 0.447 0.143 3.130 

    SigmaU squared 0.031 0.007 4.558 

    SigmaV squared 0.008 0.001 12.926 

LLF   298.337 

 

Table 3:  SFACD estimates, two line outputs and no OEF variable, 2012–2017 

Variable Coefficient Standard error t–ratio 

ln(Custnum) 0.708 0.096 7.350 

ln(CircLen) 0.281 0.044 6.340 

ln(UGC) –0.113 0.049 –2.290 

ln(RMDemand) 0.124 0.086 1.440 

Year 0.015 0.003 5.690 

Country dummy variables:    

    New Zealand 0.068 0.103 0.660 

    Ontario 0.316 0.094 3.370 

Constant –21.027 5.382 –3.910 

Variance parameters:    

    Mu 0.447 0.143 3.130 

    SigmaU squared 0.031 0.007 4.558 

    SigmaV squared 0.008 0.001 12.926 

LLF   298.337 

 

We use the SFACD model to illustrate. Table 2 presents the results from Economic Insights 

(2018) with the specification including three outputs (of which total circuit length is one) and 

the share of underground as an OEF variable. Table 3 presents the results using four outputs 

(including total circuit length and underground circuit length) and no OEF variable. It can be 

seen that the coefficient on total length in table 3 is the coefficient on total length in table 2 

minus the coefficient on the share of underground in table 2 while the coefficient on 

underground length in table 3 is the same as the coefficient on the share of underground in 

table 2. 



 

 13 

Memorandum 

Table 4:  DNSP line lengths and underground share growth rates, 2006–2017 

DNSP Total Length U/G Length Share UGC Share Growth Share Growth 

 2017 kms 2017 kms 2017 % 2006-12 %pa 2012-17 %pa 

ACT 5,333 2,972 55.7% 1.67% 1.03% 

AGD 41,642 15,752 37.8% 1.55% 1.11% 

CIT 4,550 2,274 50.0% 1.98% 0.74% 

END 36,993 13,766 37.2% 2.43% 2.86% 

ENX 53,757 18,638 34.7% 3.28% 1.70% 

ERG 152,491 9,315 6.1% 10.55% 3.91% 

ESS 192,103 8,717 4.5% 6.66% 3.24% 

JEN 6,345 1,892 29.8% 2.68% 2.20% 

PCR 75,121 6,326 8.4% 5.79% 4.99% 

SAP 88,971 17,754 20.0% 2.48% 1.17% 

AND 44,907 6,575 14.6% 4.47% 3.68% 

TND 22,725 2,524 11.1% 2.67% 1.08% 

UED 13,342 3,297 24.7% 1.85% 3.70% 

 

In table 4 we present 2017 data on total circuit length, underground circuit length, the share of 

underground and the average annual growth rates in the share of underground for 2006 to 

2012 and for 2012 to 2017 for each DNSP. The shares of underground ranged from a low of 

4.5 per cent for Essential Energy to a high of 55.7 per cent for Evoenergy (ACT). For all but 

two DNSPs (END and UED), the average annual growth rate of the share of underground 

reduced noticeably for the 2012–2017 period compared to the period 2006–2012. For the 

period 2012–2017 average annual growth rates of the share of underground ranged from a 

low of 0.7 per cent for CIT to a high of 5.0 per cent for PCR. And, there is a broadly inverse 

relationship between the size of the share of underground and its average annual growth rate. 

That is, the highest growth rates in the share are generally observed for the DNSPs with the 

lowest shares of underground (ie remote and rural DNSPs), reflecting higher growth rates 

from smaller initial bases. The range in the size of the shares and the broadly inverse 

relationship between the size of the share and its annual growth rate point to the likely 

desirability of including more tailored growth rates of underground shares in the rate of 

change rather than an industry average growth rate. 

In the accompanying spreadsheet ‘Economic Insights AER DNSP Output-Prod RoC Options 

7Feb2019.xls’ we present five examples of how the AER could include the share(s) of 

undergrounding in the ‘rate of change’ component of its assessments of DNSPs’ proposed 

opex. To recap, the rate of change is the growth rate in real prices (assumed to be zero here 

for convenience) plus the growth rate of output minus the productivity growth rate. We use 

the results for 2012–2017 from Economic Insights (2018). 

The five cases examined are as follows: 

• Case 1: the status quo where the AER takes a weighted average of output component 

growth rates and assumes a zero productivity growth rate 

• Case 2: the AER (2018) draft report preferred option of taking weighted average of output 

component growth rates and deducting a common one per cent productivity growth rate 
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(which accounts for the 2006–2016 industry average annual rate of undergrounding and 

technical change) 

• Case 3: same as case 2 but we now allow for DNSP–specific undergrounding growth rates 

for the period 2012–2017 in the productivity component (ie the productivity component 

now varies by DNSP) 

• Case 4: we account for DNSP–specific undergrounding for the period 2012–2017 in the 

output component by decomposing the share of undergrounding term – this gives the 

same answer as case 3 but would allow the AER to have all the DNSP–specific items in 

the output component while the productivity component is now limited to a common rate 

of technical change  

• Case 5: similar to case 3 but instead of individual DNSP–specific undergrounding growth 

rates we divide the DNSPs into three groups (high undergrounding with over 40 per cent 

share, medium undergrounding with between 20 per cent and 40 per cent share and low 

undergrounding with less than 20 per cent share). We then take a weighted average 

undergrounding growth rate for the DNSPs in each of the three groups. The reason for 

considering this option is that it would reduce any potential incentive for DNSPs to game 

their undergrounding forecasts which could be present with cases 3 and 4. However, there 

may be other disadvantages with this option and it is presented simply for discussion 

purposes.  

We further look at three different ways of implementing these options. These are labelled in 

the accompanying spreadsheet as: 

• All: This uses the AER’s current practice of taking an average across the results for the 

various opex cost function models (in this case the 4 opex cost function models reported 

in the 2018 ABR for 2012–2017) and corresponding opex PFP. This is straightforward for 

calculating the output growth rate. But an issue arises in this analysis in extending it to 

opex PFP as opex PFP does not separately allow for undergrounding. We have addressed 

this in the examples in the spreadsheet by assuming the undergrounding coefficient for 

opex PFP is zero and only applying the same 0.5 per cent rate of technical change to opex 

PFP. This is a relatively conservative treatment. An alternative approach would be to 

include a higher rate of technical change for opex PFP in recognition that it also includes 

the effect of increased undergrounding over time. 

• CostFns: This only applies the method to the 4 opex cost function models and does not 

include opex MPFP. 

• SFACD: This only includes the SFACD model in line with earlier practice. 

The results using the ‘All’ method are presented in table 5, noting that the real price 

component is assumed to be zero for convenience. The results show the following: 

• the status quo (Case 1) is relatively generous to the DNSPs (as expected as there is no 

allowance for positive productivity from any source) 

• the AER (2018) draft report preferred option (Case 2) is relatively onerous but this in part 

reflects that the draft report used data starting in 2006 and going to 2016 and the growth 
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in undergrounding slowed noticeably for 2012–2017 compared to 2006–2012 for all but 2 

of the 13 DNSPs  

• it makes no difference whether DNSP–specific undergrounding is included via the 

productivity component (Case 3) or the output component (Case 4) 

• in most cases using the DNSP–specific undergrounding shares for 2012 to 2017 (Cases 3 

and 4) produce a less onerous result for DNSPs than the AER (2018) draft report result 

(noting the different time periods used plays an important role here), and 

• as expected, whether the group average undergrounding share (Case 5) is better or worse 

than the DNSP–specific options for each DNSP depends on where the DNSP’s own share 

lies relative to the group average. 

Table 5:  Options for including undergrounding in the rate of change 

DNSP Case 1 Case 2 Case 3 Case 4 Case 5 

 Status quo AER (2018) Prod=DNSP Output incl UG, Prod=Group 

 Prod = 0% Prod = 1% SUG+0.5%  Prod=0.5% SUG+0.5% 

ACT 1.40% 0.40% 0.79% 0.79% 0.81% 

AGD 0.59% –0.41% –0.02% –0.02% –0.11% 

CIT 1.00% 0.00% 0.43% 0.43% 0.41% 

END 1.41% 0.41% 0.61% 0.61% 0.70% 

ENX 1.02% 0.02% 0.34% 0.34% 0.31% 

ERG 0.63% –0.37% –0.29% –0.29% –0.18% 

ESS 1.27% 0.27% 0.42% 0.42% 0.47% 

JEN 0.75% –0.25% 0.02% 0.02% 0.05% 

PCR 1.17% 0.17% 0.14% 0.14% 0.37% 

SAP 0.45% –0.55% –0.17% –0.17% –0.35% 

AND 1.16% 0.16% 0.27% 0.27% 0.36% 

TND 0.44% –0.56% –0.17% –0.17% –0.36% 

UED 0.65% –0.35% –0.24% –0.24% –0.06% 

 

This analysis has shown that our current treatment of undergrounding already includes a 

different elasticity for the cost of adding additional underground and is equivalent to 

including an additional underground output variable and dropping the current OEF variable. 

There is therefore no need to include an additional underground cables output variable as 

suggested by Endeavour Energy (2018, p.22). Going forward, there may be some advantage 

from a practical standpoint in including growth in undergrounding in the output component of 

the rate of change (ie Case 4 above) so that all of the DNSP–specific components are together 

and the productivity component can then be the estimate of the rate of frontier shift which 

would be common across all DNSPs. 
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Appendix A:  Econometric estimates and calculations 

 

Table A1:  SFACD estimates of the log–log model 

               Note:  N=Obs used in calculating BIC; see [R] BIC note
                                                                             
           .      804           .     554.681     11    -1087.362   -1035.776
                                                                             
       Model      Obs    ll(null)   ll(model)     df          AIC         BIC
                                                                             

. estat ic

                                                                              
    sigma_v2     .0110249   .0005744                      .0098991    .0121506
    sigma_u2     .0299861    .006111                      .0180088    .0419635
       gamma     .7311732   .0414511                      .6427359    .8043816
      sigma2      .041011   .0061319                      .0305936    .0549756
                                                                              
  /ilgtgamma     1.000583   .2108838     4.74   0.000     .5872585    1.413908
   /lnsigma2    -3.193915   .1495179   -21.36   0.000    -3.486965   -2.900865
         /mu     .4548949   .1246796     3.65   0.000     .2105273    .6992624
                                                                              
       _cons    -27.79952   2.460194   -11.30   0.000    -32.62141   -22.97763
         cd3     .2894039   .0879543     3.29   0.001     .1170166    .4617912
         cd2     .0956584   .0970934     0.99   0.325    -.0946412     .285958
          yr     .0184356   .0012058    15.29   0.000     .0160722     .020799
         lz1    -.1501092   .0330289    -4.54   0.000    -.2148447   -.0853738
         ly4     .1642474   .0607989     2.70   0.007     .0450838     .283411
         ly3     .1261442   .0411287     3.07   0.002     .0455335     .206755
         ly2     .7089977   .0700974    10.11   0.000     .5716094     .846386
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =    554.681                    Prob > chi2        =    0.0000
                                                Wald chi2(7)       =   3468.86

                                                               max =        12
                                                               avg =        12
                                                Obs per group: min =        12

Group variable: DNSP                            Number of groups   =        67
Time-invariant inefficiency model               Number of obs      =       804

Iteration 8:   log likelihood =    554.681  
Iteration 7:   log likelihood =  554.68099  
Iteration 6:   log likelihood =  554.67902  
Iteration 5:   log likelihood =   554.6255  
Iteration 4:   log likelihood =  554.42331  
Iteration 3:   log likelihood =  552.89204  
Iteration 2:   log likelihood =  551.31438  
Iteration 1:   log likelihood =  530.09623  
Iteration 0:   log likelihood =  501.44431  

. xtfrontier lvc ly2-ly4 lz1 yr cd2 cd3, ti cost 
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Table A2:  SFACD estimates of the log–lin model 

               Note:  N=Obs used in calculating BIC; see [R] BIC note
                                                                             
           .      804           .    547.8918     11    -1073.784   -1022.198
                                                                             
       Model      Obs    ll(null)   ll(model)     df          AIC         BIC
                                                                             

. estat ic

                                                                              
    sigma_v2     .0111942   .0005834                      .0100507    .0123377
    sigma_u2     .0328838   .0072973                      .0185814    .0471862
       gamma     .7460369    .043343                      .6523117    .8214139
      sigma2      .044078   .0073112                      .0318445    .0610113
                                                                              
  /ilgtgamma     1.077586   .2287645     4.71   0.000     .6292162    1.525956
   /lnsigma2    -3.121794   .1658693   -18.82   0.000    -3.446892   -2.796696
         /mu     .4002543   .0700395     5.71   0.000     .2629794    .5375292
                                                                              
       _cons    -25.45947   2.388034   -10.66   0.000    -30.13993   -20.77901
         cd3     .3086493    .090206     3.42   0.001     .1318488    .4854498
         cd2     .0437104    .092184     0.47   0.635    -.1369668    .2243877
          yr     .0174565   .0011919    14.65   0.000     .0151204    .0197927
          z1    -.3529766   .1306403    -2.70   0.007    -.6090268   -.0969265
         ly4       .12055   .0608766     1.98   0.048     .0012339     .239866
         ly3     .1853719    .038332     4.84   0.000     .1102426    .2605012
         ly2     .6952732   .0714445     9.73   0.000     .5552445     .835302
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =  547.89184                    Prob > chi2        =    0.0000
                                                Wald chi2(7)       =   4059.60

                                                               max =        12
                                                               avg =        12
                                                Obs per group: min =        12

Group variable: DNSP                            Number of groups   =        67
Time-invariant inefficiency model               Number of obs      =       804

Iteration 8:   log likelihood =  547.89184  
Iteration 7:   log likelihood =  547.89184  
Iteration 6:   log likelihood =   547.8916  
Iteration 5:   log likelihood =  547.62827  
Iteration 4:   log likelihood =  547.05083  
Iteration 3:   log likelihood =  544.77654  
Iteration 2:   log likelihood =  531.95596  
Iteration 1:   log likelihood =  515.61601  (backed up)
Iteration 0:   log likelihood =  510.88769  

. xtfrontier lvc ly2-ly4 z1 yr cd2 cd3, ti cost 
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Table A3:  LSECD estimates of the log–log model 

                                                                              
         rho      .641407
                                                                              
       _cons    -28.76936    4.04862    -7.11   0.000    -36.70451   -20.83421
         d13    -.5953842   .1424828    -4.18   0.000    -.8746453   -.3161231
         d12    -.5085928   .1526058    -3.33   0.001    -.8076947   -.2094909
         d11    -.5362143   .1450322    -3.70   0.000    -.8204723   -.2519563
         d10    -.5648979   .1457805    -3.87   0.000    -.8506223   -.2791734
          d9    -.8430181   .1510678    -5.58   0.000    -1.139106   -.5469307
          d8    -.3749932    .141667    -2.65   0.008    -.6526555   -.0973309
          d7    -.3667623   .1634424    -2.24   0.025    -.6871035   -.0464212
          d6    -.1997316   .1533549    -1.30   0.193    -.5003016    .1008385
          d5    -.3177679   .1380494    -2.30   0.021    -.5883398    -.047196
          d4    -.2356173   .1411181    -1.67   0.095    -.5122036     .040969
          d3    -.7211336   .1452657    -4.96   0.000    -1.005849   -.4364181
          d2     .0300989   .1629404     0.18   0.853    -.2892583    .3494562
         cd3    -.1103041   .1310462    -0.84   0.400      -.36715    .1465418
         cd2    -.2833338   .1318263    -2.15   0.032    -.5417086    -.024959
          yr     .0193193    .002011     9.61   0.000     .0153779    .0232608
         lz1    -.1818043   .0205419    -8.85   0.000    -.2220657   -.1415429
         ly4     .2068251   .0563772     3.67   0.000     .0963279    .3173223
         ly3      .107238    .026785     4.00   0.000     .0547404    .1597356
         ly2     .6840551   .0575285    11.89   0.000     .5713014    .7968088
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Het-corrected
                                                                              

Estimated coefficients     =        20          Prob > chi2        =    0.0000
Estimated autocorrelations =         1          Wald chi2(19)      =  23841.59
Estimated covariances      =        67          R-squared          =    0.9930
                                                               max =        12
Autocorrelation:  common AR(1)                                 avg =        12
Panels:           heteroskedastic (unbalanced)  Obs per group: min =        12
Time variable:    year                          Number of groups   =        67
Group variable:   DNSP                          Number of obs      =       804

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])
. xtpcse lvc ly2-ly4 lz1 yr cd2 cd3 d2-d13, c(a) het
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Table A4:  LSECD estimates of the log–lin model 

                                                                              
         rho     .6490583
                                                                              
       _cons    -27.12844   4.091417    -6.63   0.000    -35.14748   -19.10941
         d13    -.6220163   .1462362    -4.25   0.000     -.908634   -.3353987
         d12    -.5364022   .1556005    -3.45   0.001    -.8413736   -.2314307
         d11    -.5815252   .1472787    -3.95   0.000    -.8701861   -.2928644
         d10    -.6807834   .1486623    -4.58   0.000    -.9721562   -.3894106
          d9    -.8364227   .1550759    -5.39   0.000    -1.140366   -.5324795
          d8    -.3965225   .1447853    -2.74   0.006    -.6802964   -.1127486
          d7    -.3215451    .165226    -1.95   0.052    -.6453822    .0022919
          d6    -.1833789   .1586649    -1.16   0.248    -.4943563    .1275985
          d5    -.4016087   .1412659    -2.84   0.004    -.6784847   -.1247327
          d4    -.3136042   .1443256    -2.17   0.030    -.5964772   -.0307313
          d3    -.7021106   .1473433    -4.77   0.000    -.9908983    -.413323
          d2    -.0308929   .1667003    -0.19   0.853    -.3576195    .2958336
         cd3    -.0880971   .1325708    -0.66   0.506    -.3479312     .171737
         cd2    -.3291822   .1336984    -2.46   0.014    -.5912264   -.0671381
          yr     .0187294    .002035     9.20   0.000     .0147409    .0227178
          z1    -.6320253   .0800284    -7.90   0.000     -.788878   -.4751725
         ly4     .2141661   .0567247     3.78   0.000     .1029877    .3253444
         ly3     .1614742   .0241645     6.68   0.000     .1141126    .2088358
         ly2     .6381017    .058642    10.88   0.000     .5231655    .7530378
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Het-corrected
                                                                              

Estimated coefficients     =        20          Prob > chi2        =    0.0000
Estimated autocorrelations =         1          Wald chi2(19)      =  22451.37
Estimated covariances      =        67          R-squared          =    0.9930
                                                               max =        12
Autocorrelation:  common AR(1)                                 avg =        12
Panels:           heteroskedastic (unbalanced)  Obs per group: min =        12
Time variable:    year                          Number of groups   =        67
Group variable:   DNSP                          Number of obs      =       804

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])
. xtpcse lvc ly2-ly4 z1 yr cd2 cd3 d2-d13, c(a) het
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Table A5:  LSETLG estimates of the log–log model 

                                                                              

         rho     .6292089

                                                                              

       _cons    -30.32032   4.012043    -7.56   0.000    -38.18378   -22.45686

         d13    -.5563708   .1480471    -3.76   0.000    -.8465377   -.2662039

         d12    -.5224307   .1492991    -3.50   0.000    -.8150515   -.2298099

         d11    -.5724861   .1459178    -3.92   0.000    -.8584799   -.2864924

         d10    -.6921147   .1472436    -4.70   0.000    -.9807069   -.4035225

          d9    -.9271692   .1512062    -6.13   0.000    -1.223528   -.6308104

          d8    -.2960386   .1440227    -2.06   0.040     -.578318   -.0137593

          d7    -.5066862   .1763148    -2.87   0.004    -.8522569   -.1611156

          d6    -.2894695   .1658814    -1.75   0.081    -.6145911    .0356522

          d5    -.4689943   .1406457    -3.33   0.001    -.7446548   -.1933339

          d4     -.380846   .1407238    -2.71   0.007    -.6566596   -.1050325

          d3    -.7568452   .1415943    -5.35   0.000    -1.034365   -.4793254

          d2    -.1460403   .1680122    -0.87   0.385    -.4753383    .1832576

         cd3    -.2142207   .1280118    -1.67   0.094    -.4651193    .0366779

         cd2    -.3721261   .1291859    -2.88   0.004    -.6253257   -.1189264

          yr     .0201084   .0019921    10.09   0.000     .0162039     .024013

         lz1    -.1630637   .0247885    -6.58   0.000    -.2116483   -.1144791

        ly44     .0717242   .1686531     0.43   0.671    -.2588298    .4022782

        ly34    -.1831239   .0708317    -2.59   0.010    -.3219514   -.0442964

        ly33     -.011154    .036964    -0.30   0.763    -.0836021    .0612942

        ly24     .1799136   .2093524     0.86   0.390    -.2304096    .5902367

        ly23     .2060105   .0892356     2.31   0.021     .0311119     .380909

        ly22    -.3981699    .275118    -1.45   0.148    -.9373912    .1410514

         ly4     .3051732   .0578296     5.28   0.000     .1918293    .4185172

         ly3     .1102355   .0273148     4.04   0.000     .0566995    .1637716

         ly2      .557858   .0663948     8.40   0.000     .4277265    .6879895

                                                                              

         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Het-corrected

                                                                              

Estimated coefficients     =        26          Prob > chi2        =    0.0000

Estimated autocorrelations =         1          Wald chi2(25)      =  28779.95

Estimated covariances      =        67          R-squared          =    0.9933

                                                               max =        12

Autocorrelation:  common AR(1)                                 avg =        12

Panels:           heteroskedastic (unbalanced)  Obs per group: min =        12

Time variable:    Year                          Number of groups   =        67

Group variable:   DNSP                          Number of obs      =       804

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

. xtpcse lvc ly2-ly4 ly22 ly23 ly24 ly33 ly34 ly44 lz1 yr cd2 cd3 d2-d13, c(a) het

                                                                              

         rho     .6413989

                                                                              

       _cons    -28.76827   4.048547    -7.11   0.000    -36.70328   -20.83326
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Table A6:  LSETLG estimates of the log–lin model 

                                                                              

         rho      .638118

                                                                              

       _cons    -28.51854   4.008501    -7.11   0.000    -36.37506   -20.66202

         d13    -.5935412   .1527958    -3.88   0.000    -.8930156   -.2940669

         d12    -.5483721   .1527163    -3.59   0.000    -.8476906   -.2490536

         d11    -.5976036   .1483443    -4.03   0.000    -.8883531   -.3068541

         d10    -.8092906   .1488392    -5.44   0.000     -1.10101   -.5175712

          d9    -.9253702   .1553314    -5.96   0.000    -1.229814   -.6209262

          d8    -.3309359   .1481394    -2.23   0.025    -.6212838   -.0405879

          d7    -.5296636   .1795892    -2.95   0.003    -.8816519   -.1776753

          d6    -.3523943    .170786    -2.06   0.039    -.6871288   -.0176599

          d5    -.5409187   .1432179    -3.78   0.000    -.8216207   -.2602167

          d4    -.4496818   .1434502    -3.13   0.002     -.730839   -.1685246

          d3    -.7798158   .1445561    -5.39   0.000     -1.06314   -.4964911

          d2    -.2112029   .1715949    -1.23   0.218    -.5475228    .1251169

         cd3    -.2001995   .1300115    -1.54   0.124    -.4550172    .0546183

         cd2    -.4281695   .1311643    -3.26   0.001    -.6852469   -.1710922

          yr     .0194091   .0019951     9.73   0.000     .0154989    .0233194

          z1    -.5567483   .0879771    -6.33   0.000    -.7291804   -.3843163

        ly44     .0346005   .1717232     0.20   0.840    -.3019708    .3711717

        ly34     -.163892   .0719324    -2.28   0.023    -.3048768   -.0229071

        ly33     .0531311   .0332523     1.60   0.110    -.0120422    .1183044

        ly24     .2106057   .2154967     0.98   0.328      -.21176    .6329714

        ly23     .1225232   .0889457     1.38   0.168    -.0518072    .2968536

        ly22    -.3563588   .2852361    -1.25   0.212    -.9154112    .2026936

         ly4     .3014527   .0580567     5.19   0.000     .1876637    .4152416

         ly3     .1508159   .0242387     6.22   0.000     .1033089    .1983229

         ly2     .5358283   .0672177     7.97   0.000      .404084    .6675727

                                                                              

         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Het-corrected

                                                                              

Estimated coefficients     =        26          Prob > chi2        =    0.0000

Estimated autocorrelations =         1          Wald chi2(25)      =  27463.75

Estimated covariances      =        67          R-squared          =    0.9933

                                                               max =        12

Autocorrelation:  common AR(1)                                 avg =        12

Panels:           heteroskedastic (unbalanced)  Obs per group: min =        12

Time variable:    Year                          Number of groups   =        67

Group variable:   DNSP                          Number of obs      =       804

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

. xtpcse lvc ly2-ly4 ly22 ly23 ly24 ly33 ly34 ly44 z1 yr cd2 cd3 d2-d13, c(a) het

                                                                              

         rho     .6490584

                                                                              

       _cons    -27.12816   4.091379    -6.63   0.000    -35.14711    -19.1092
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Table A7:  SFACD estimates of artificial Model C 

                                                                              
    sigma_v2     .0109928   .0005728                      .0098701    .0121156
    sigma_u2     .0303635   .0062473                       .018119     .042608
       gamma      .734192   .0415573                      .6453427    .8074248
      sigma2     .0413563   .0062656                      .0307314    .0556547
                                                                              
  /ilgtgamma     1.015997   .2129462     4.77   0.000     .5986296    1.433363
   /lnsigma2    -3.185529   .1515031   -21.03   0.000     -3.48247   -2.888589
         /mu     .4536005   .1192861     3.80   0.000     .2198041    .6873968
                                                                              
       _cons    -27.67065   2.453898   -11.28   0.000    -32.48021    -22.8611
         cd3     .2596579   .0912898     2.84   0.004     .0807331    .4385827
         cd2     .0861332   .0971751     0.89   0.375    -.1043266    .2765929
          yr     .0183115   .0012067    15.17   0.000     .0159464    .0206765
          z1     .2436451   .2001082     1.22   0.223    -.1485598    .6358499
         lz1    -.1966823   .0505654    -3.89   0.000    -.2957886    -.097576
         ly4     .1672816   .0608195     2.75   0.006     .0480775    .2864857
         ly3     .1212615   .0414161     2.93   0.003     .0400874    .2024356
         ly2     .7026695    .070312     9.99   0.000     .5648605    .8404784
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =  555.42049                    Prob > chi2        =    0.0000
                                                Wald chi2(8)       =   3451.49

                                                               max =        12
                                                               avg =        12
                                                Obs per group: min =        12

Group variable: DNSP                            Number of groups   =        67
Time-invariant inefficiency model               Number of obs      =       804

Iteration 8:   log likelihood =  555.42049  
Iteration 7:   log likelihood =  555.42048  
Iteration 6:   log likelihood =  555.41895  
Iteration 5:   log likelihood =  555.38153  
Iteration 4:   log likelihood =  554.82869  
Iteration 3:   log likelihood =  548.82973  
Iteration 2:   log likelihood =  546.21499  
Iteration 1:   log likelihood =  526.23668  
Iteration 0:   log likelihood =  525.71673  

. xtfrontier lvc ly2-ly4 lz1 z1 yr cd2 cd3, ti cost 
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Table A8:  LSECD estimates of artificial Model C 

                                                                              
         rho     .6401296
                                                                              
       _cons    -28.62589   4.040933    -7.08   0.000    -36.54597   -20.70581
         d13    -.6125535   .1433618    -4.27   0.000    -.8935375   -.3315695
         d12    -.5233446   .1528493    -3.42   0.001    -.8229237   -.2237655
         d11    -.5535433   .1455237    -3.80   0.000    -.8387646   -.2683221
         d10    -.5932578   .1482425    -4.00   0.000    -.8838078   -.3027078
          d9    -.8518545   .1509496    -5.64   0.000     -1.14771   -.5559987
          d8    -.3886171   .1420394    -2.74   0.006    -.6670093    -.110225
          d7    -.3655651   .1625669    -2.25   0.025    -.6841904   -.0469398
          d6    -.2055431   .1531595    -1.34   0.180    -.5057302    .0946441
          d5    -.3414141   .1399028    -2.44   0.015    -.6156186   -.0672096
          d4    -.2581239    .142705    -1.81   0.070    -.5378206    .0215729
          d3    -.7241128   .1448141    -5.00   0.000    -1.007943   -.4402823
          d2     .0095712   .1638997     0.06   0.953    -.3116663    .3308088
         cd3     -.111381    .130533    -0.85   0.394     -.367221    .1444589
         cd2    -.2928826   .1315632    -2.23   0.026    -.5507417   -.0350234
          yr     .0192963   .0020071     9.61   0.000     .0153625    .0232301
          z1    -.1452175   .1574064    -0.92   0.356    -.4537283    .1632934
         lz1     -.148492   .0404554    -3.67   0.000    -.2277831   -.0692009
         ly4     .2130718   .0566405     3.76   0.000     .1020585    .3240851
         ly3     .1129993   .0271616     4.16   0.000     .0597636     .166235
         ly2     .6764598   .0579865    11.67   0.000     .5628083    .7901112
                                                                              
         lvc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          Het-corrected
                                                                              

Estimated coefficients     =        21          Prob > chi2        =    0.0000
Estimated autocorrelations =         1          Wald chi2(20)      =  23959.64
Estimated covariances      =        67          R-squared          =    0.9930
                                                               max =        12
Autocorrelation:  common AR(1)                                 avg =        12
Panels:           heteroskedastic (unbalanced)  Obs per group: min =        12
Time variable:    year                          Number of groups   =        67
Group variable:   DNSP                          Number of obs      =       804

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])
. xtpcse lvc ly2-ly4 lz1 z1 yr cd2 cd3 d2-d13, c(a) het
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