TABLE OF CONTENTS

1. **Summary** .. iv
 1.1 Framework for estimating gamma ... 1
 1.2 Best estimate of gamma .. 1

2. **Definition of gamma** ... 3
 2.1 Rule requirements ... 3
 2.2 Construing the term “value of imputation credits” .. 4
 2.3 Components of gamma—the Monkhouse formula ... 6
 2.4 Previous AER/Tribunal approach to measuring gamma, and that of other regulators 6
 2.5 AER revised position in the rate of return guideline ... 7
 2.6 Conclusion on the correct approach to defining gamma .. 10

3. **Payout ratio** ... 11
 3.1 Previous AER/Tribunal approach to the payout ratio ... 11
 3.2 AER position in the rate of return guideline ... 11
 3.3 Latest evidence on the payout ratio ... 11
 3.4 Conclusion on the payout ratio .. 12

4. **Theta** .. 13
 4.1 Previous AER/Tribunal approach to theta .. 13
 4.2 AER position in the rate of return guideline ... 14
 4.3 Correct approach to estimating theta ... 16
 4.4 Current market value evidence .. 23

List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1</td>
<td>Example of gamma impact on overall returns</td>
<td>5</td>
</tr>
<tr>
<td>1–2</td>
<td>Dividend drop-off studies covering the post-2000 period</td>
<td>25</td>
</tr>
<tr>
<td>1–3</td>
<td>SFG responses to methodological issues raised by the AER and its consultants</td>
<td>26</td>
</tr>
</tbody>
</table>

List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1</td>
<td>AER view of relevant evidence on theta</td>
<td>15</td>
</tr>
<tr>
<td>1–2</td>
<td>Illustrative impact on value of imputation credits</td>
<td>19</td>
</tr>
<tr>
<td>1–3</td>
<td>Approach to determining theta</td>
<td>23</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>NGR</td>
<td>National Gas Rules</td>
<td></td>
</tr>
<tr>
<td>Tribunal</td>
<td>Tribunal</td>
<td></td>
</tr>
<tr>
<td>NGO</td>
<td>National Gas Objective</td>
<td></td>
</tr>
<tr>
<td>ATO</td>
<td>Australian Tax Office</td>
<td></td>
</tr>
<tr>
<td>ERA</td>
<td>Economic Regulation Authority of Western Australia</td>
<td></td>
</tr>
<tr>
<td>IPART</td>
<td>Independent Pricing and Regulatory Tribunal</td>
<td></td>
</tr>
<tr>
<td>SORI</td>
<td>Statement of Regulatory Intent on WACC Parameters</td>
<td></td>
</tr>
<tr>
<td>JGN</td>
<td>Jemena Gas Networks (NSW) Ltd</td>
<td></td>
</tr>
</tbody>
</table>
1. SUMMARY

1.1 FRAMEWORK FOR ESTIMATING GAMMA

1. Gamma (\(\gamma\)) is defined in the National Gas Rules (NGR) as “the value of imputation credits”.

 Gamma is a measure of value to investors

2. We consider it clear that what the NGR requires an estimate of the value of imputation credits to investors in the business. This interpretation is consistent with the broader regulatory framework and the task set by the NGR to determine total revenue, as well as past regulatory practice and previous decisions of the Australian Competition Tribunal (Tribunal).

3. This is also the interpretation that best achieves the National Gas Objective (NGO) as it ensures that the adjustment for imputation credits in the taxation building block properly reflects the actual value of imputation credits to investors, not merely their notional face value or potential value. Accounting for gamma in this way ensures that the overall return received by investors (including the value they ascribe to imputation credits) is sufficient to promote efficient investment in, and use of, infrastructure, for the long-term interests of consumers. On the other hand, if the adjustment for imputation credits differs from the actual that investors place on them, then investors are being either under or over compensated—neither of which is consistent with the NGO.

 Gamma is the product of a distribution rate and theta (i.e. the value of distributed imputation credits)

4. We propose calculating gamma in the orthodox manner, as the product of:

 - the distribution rate—the extent to which imputation credits that are created when companies pay tax, are distributed to investors, and
 - theta—the value of distributed imputation credits to investors who receive them.

1.2 BEST ESTIMATE OF GAMMA

The best estimate of the distribution rate is 0.7

5. Jemena Gas Networks (NSW) Ltd (JGN) proposes a distribution rate of 0.7, which is consistent with the AER’s rate of return guideline. Recent empirical evidence continues to support a distribution rate of 0.7.\(^1\)

The best estimate of theta is 0.35

6. JGN proposes a value for theta of 0.35. The reasons why JGN is proposing a different value for theta to that in the rate of return guideline include:

 - New AER framework does not promote the NGO. JGN does not agree with the AER’s recently established conceptual framework for estimating theta, and in particular the focus on utilisation evidence, rather than market value evidence. The AER’s approach is not consistent with the NGO. It does not measure the required return for the purposes of promoting efficient investment, and would lead to underinvestment if adopted.

\(^1\) See section 1.3.3.
• **Conventional framework does promote the NGO.** To provide an acceptable overall return to equity-holders, theta must be estimated as the value of distributed imputation credits to equity-holders. This is the conventional and orthodox approach to estimating theta. It is also the approach that best gives effect to the NGO, as it recognises the value to equity-holders of imputation credits and provides for overall returns that promote efficient investment.

• **There are good reasons why imputation credits are valued at less than face value.** There are compelling reasons why the benefit of imputation credits—which is the amount by which the allowable return otherwise calculated in accordance with the NGR should be reduced—is significantly less than the face value of imputation credits or the utilisation of imputation credits. However, these were not considered in the rate of return guideline.

• **Proposed value reflects expectations of additional benefit from imputation credits.** The value for theta proposed by JGN accords with what one would expect to be the additional benefit conferred by the system of imputation credits. The value of theta proposed in the rate of return guideline does not.

• **Taxation statistics are unreliable.** There are overwhelming problems with the taxation statistics and other forms of evidence given primary emphasis in the rate of return guideline. They are, and are well recognised to be, simply unreliable. Further, a key piece of evidence used previously by the AER (Handley and Maheswaran (2008)) is not an empirical study at all (because the data was not available), but merely involves an assumption of full utilisation by domestic investors; so any reliance upon it involves obvious error.

• **Market value studies provide only relevant evidence on the benefit from (or value of) imputation credits.** The only source of evidence capable of providing a point estimate for the value of distributed imputation credits to investors is market value studies. Evidence of utilisation rates (or potential utilisation rates, as indicated by the equity ownership approach) can only indicate the upper bound for investors’ valuation of imputation credits. The conceptual goalposts approach referred to by the AER provides no relevant information on the actual value of credits.

• **Best market value estimate is 0.35.** The best estimate of investors’ valuation of imputation credits from market value studies is 0.35.²

Giving a best estimate of gamma of 0.25

7. JGN therefore proposes a gamma of 0.25, by combining a distribution rate of 0.7 with a theta estimate of 0.35. Our reasons for proposing a different value for theta to that in the rate of return guideline are elaborated below.

² See section 1.4.4.
2. DEFINITION OF GAMMA

2.1 RULE REQUIREMENTS

8. Rule 87A of the NGR requires an estimate of γ (i.e. gamma), being "the value of imputation credits".\(^3\)

Previous regulatory practice was to measure gamma as ‘value’

9. Prior to changes to the NER—which took effect in November 2012—gamma was defined as “the assumed utilisation of imputation credits” (the NGR did not previously include a definition for gamma). This term in the NER was widely understood to be, and uniformly applied by regulators as, the value equity-holders place on imputation credits created.\(^4\) However, as part of the package of amendments to the NER in November 2012, the rule was clarified by amending the definition of gamma to be the value rather than assumed utilisation of imputation credits.

The recent rule change does not reflect a change to this practice

10. The way in which the NER was changed does not suggest that the AEMC was in any way concerned or dissatisfied with how the estimation of gamma had previously been approached. On the contrary, the change made by the AEMC appears to have been directed at better aligning the language of the NER with accepted orthodox regulatory practice. Certainly, there is nothing in the explanatory materials accompanying the rule change that indicates that there was intended to be a fundamental change in the way gamma (and particularly theta) is estimated.

11. If any party (including the AER) had been concerned about how the estimation of gamma had previously been approached, it would have been open to them to propose a more fundamental change to the rules around gamma and/or the calculation of corporate income tax building block more generally. However, this was not done.

The NGR and NGO support treating gamma as a value to shareholders

12. As we will discuss further below, in the broader context of the NGR, and construing the term in line with the objectives of the legislative framework in which it sits, it makes sense that what is relevant is the value that equity-holders place on imputation credits, as opposed to simply their face value or utilisation rate. What the NGR are clearly directed at is—consistent with the NGO and the revenue and pricing principles—providing the opportunity to recover at least efficient costs, including a return to equity-holders. What is relevant in the context of the broader objectives of the NGR is the value of imputation credits to equity-holders.

13. The way that imputation credits are accounted for in the building block framework will ultimately impact upon returns for equity-holders. As such, it is critical that what is taken into account is the value of imputation credits to equity-holders, not just their face-value or utilisation rate. Further, it is important that the value of gamma is estimated consistently with values of other rate of return parameters.

\(^3\) NGR Rule 87A.

\(^4\) For example, in its 2009 WACC Review Final Decision, the AER referred to gamma as representing the ‘value for imputation credits’, noting that “Standard regulatory practice in Australia is to incorporate a value for imputation credits in determining the appropriate company tax allowance (the ‘corporate income tax building block’) to include in the required revenues of regulated businesses” (AER, Final Decision: Electricity transmission and distribution network service providers – Review of the weighted average cost of capital (WACC) parameters, May 2009, p. 393).
2.2 CONSTRUING THE TERM “VALUE OF IMPUTATION CREDITS”

The rules are clear and unambiguous

14. We consider that the words “value of imputation credits” have a clear and unambiguous meaning. We consider that the reference to value of imputation credits clearly refers to the value to equity-holders of imputation credits that are created by the business (through the payment of corporate income tax).

The rate of return guideline takes an incorrect interpretation of the rules

15. The AER suggests in the rate of return guideline that “value” could “be used in a generic sense to refer to the number that a particular parameter takes (that is, its numerical value)”.\(^5\) If the word “value” was being used in that sense, then the appropriate phrase would be the “value for imputation credits”. Yet, such a phrase is meaningless and provides no assistance in understanding the meaning of gamma. Instead, using the words “value of” indicates that the term has its ordinary meaning—the value of something is its worth. The interpretation in the rate of return guideline clearly is an incorrect interpretation of the rule. To apply that incorrect interpretation of the rule would involve legal error.

The NGL (and NGO) support our interpretation of the rules

16. However, to the extent that there are possible alternative interpretations of the words “value of imputation credits”, the NGL requires that the interpretation that will best achieve the purpose or object of the NGL is to be preferred to any other interpretation.\(^6\)

17. The object of the NGL is to promote efficient investment in, and efficient operation and use of, natural gas services for the long term interests of consumers of natural gas with respect to price, quality, safety, reliability and security of supply of natural gas.\(^7\) The relevant secondary materials make clear that the NGO is ‘an economic concept’, which at its core seeks to promote economic efficiency. The second reading speech accompanying the introduction of the NGO states:\(^8\)

> The national gas objective is an economic concept and should be interpreted as such.

> The long term interest of consumers of gas requires the economic welfare of consumers, over the long term, to be maximised. If gas markets and access to pipeline services are efficient in an economic sense, the long term economic interests of consumers in respect of price, quality, reliability, safety and security of natural gas services will be maximised. By the promotion of an economic efficiency objective in access to pipeline services, competition will be promoted in upstream and downstream markets.

18. Accordingly, to the extent that the words “value of imputation credits” are susceptible to more than one meaning, the meaning that is more likely to promote economically efficient investment in, and use of, natural gas services ought to be preferred.

Gamma must reflect a value to investors in order to promote efficient investment

19. We consider that to promote efficient investment in, and use of, natural gas services, the words “value of imputation credits” must be interpreted as the value to equity-holders of imputation credits that are distributed by

\(^6\) NGL, Schedule 2, item 7(1).
\(^7\) NGL, s 23.
\(^8\) South Australia, Parliamentary Debates, Legislative Council, 30 April 2008, 2539 (P Holloway).
the business. In the context of determining an adjustment to the corporate income tax building block to account for imputation credits, what is relevant is the value that equity-holders place on those credits—since this is what impacts on the overall return they receive on their investment, and ultimately, incentives to undertake efficient investment. If the value for gamma is set higher (or lower) than the actual value to investors of imputation credits, then the discount applied to the tax building block will overstate (understate) the value to investors of imputation credits; meaning that overall after-tax returns will be too low (or too high), which will lead to over or under investment.

20. This is illustrated by the following simple example. If investors require an annual after-tax return of $100 to invest in a particular business, and the business faces an annual tax liability of $50, the level of pre-tax return that is required to promote efficient investment would be $150, if there is no value assigned to imputation credits. However, if investors assign a positive value to imputation credits, the level of pre-tax return that is required to promote efficient investment would be somewhat less than $150, depending on how much value is assigned to those credits. For example, if investors assign a value to credits representing 20 per cent of the total face value of all credits generated by the business (i.e., a gamma of 0.2), the required pre-tax return would reduce to $140.

21. Table 2–1 illustrates the implication of assigning a value to imputation credits that does not reflect the value actually placed on credits by investors in the business. Clearly, if the value that is assigned to gamma is higher than the value actually placed on credits by investors in the business, the level of pre-tax returns will be below what is required by investors to promote efficient investment.

Table 2–1: Example of gamma impact on overall returns

<table>
<thead>
<tr>
<th>Required post-tax return</th>
<th>Required returns, based on actual value of imputation credits to investors (assume value of 0.2)</th>
<th>Required returns, based on higher value of imputation credits to investors (assume value of 0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required post-tax return</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>Company tax liability</td>
<td>$50</td>
<td>$50</td>
</tr>
<tr>
<td>Less value of imputation credits to investors</td>
<td>$10</td>
<td>$20</td>
</tr>
<tr>
<td>Required pre-tax return</td>
<td>$140</td>
<td>$130</td>
</tr>
</tbody>
</table>

(1) This is a stylised example that does not match directly the calculations in JGN’s revenue forecast model (appendix 12.1).

22. It is therefore critical that the value for gamma accurately reflects the value of imputation credits to investors, not just their face value or the rate at which they are redeemed. This is the only interpretation of the term ‘gamma’ that properly gives effect to the statutory objective of promoting efficient investment in, and efficient operation and use of, natural gas services for the long term interests of consumers. Any other approach would result in the business not being properly compensated for the overall return required by investors—which would in turn lead to inefficient investment.

Our interpretation is consistent with how other elements of the rate of return are estimated

23. This interpretation is consistent with the approach taken to other elements of the return on capital. For example, the return on debt is estimated by reference to the returns actually required by investors, as reflected in market prices for the relevant securities. Consistent with this, any offsetting adjustment to the overall return received by investors to account for imputation credits must reflect the value actually ascribed by investors to those imputation credits, not their notional maximum value or nominal face value.
2.3 COMPONENTS OF GAMMA—THE MONKHOUSE FORMULA

Gamma is the product of a distribution rate and theta (i.e. the value of distributed imputation credits)

24. The generally accepted method for calculating gamma is using the Monkhouse formula. This is the approach that the AER used in the past, and which is still used by all Australian economic regulatory authorities.

25. Under the Monkhouse formula, gamma is the product of:
 - *distribution rate*—the credit payout ratio, and
 - *theta*—“the utilisation factor”, which Monkhouse defines as measuring “the market value of imputation credits distributed via a dividend”.

26. This formulation of gamma is widely accepted, including by the AER and JGN. As discussed below, the only area of disagreement is in relation to the estimation of theta.

2.4 PREVIOUS AER/TRIBUNAL APPROACH TO MEASURING GAMMA, AND THAT OF OTHER REGULATORS

The AER previously interpreted gamma as value to investors

27. Prior to issuing its rate of return guideline in December 2013, the AER had taken a highly orthodox approach to estimating gamma. The AER’s approach involved estimating:
 - the distribution rate by reference to the observed economy-wide distribution rate, as indicated by Australian Tax Office (ATO) data, and
 - theta as the market value of distributed credits to investors.

28. This previous approach of the AER reflected a correct interpretation of the role of gamma in the building block framework under the NGR—as it provided for an estimate of the value of imputation credits to investors. This approach (when properly applied) provided for an overall return to investors that promoted efficient investment in, and efficient operation and use of, natural gas services for the long term interests of consumers.

The Tribunal has most recently interpreted gamma as value to investors

29. The AER’s previous approach followed that taken by the Tribunal in its May 2011 decision in *Energex*. In that decision, the Tribunal determined a value for gamma of 0.25, reflecting evidence of the economy-wide distribution rate (0.7) and the market value of distributed credits, as indicated by dividend drop-off analysis (0.35).

30. The approach previously taken by the AER (following the Tribunal) is in line with the approach taken by other Australian economic regulators, such as the Economic Regulation Authority of Western Australia (ERA). The ERA explained its approach to gamma in the following terms in its recent rate of return guideline explanatory statement:

9 *Application by Energex Limited (Gamma) (No 5) [2011] ACompT 9.*

10 *ERA, Explanatory Statement for the Rate of Return Guideline: Meeting the requirements of the National Gas Rules, 16 December 2013, p. 210.*
Any value generated by the presence of franking credits in the Australian tax system must be accounted for in the return to equity—and hence the weighted average cost of capital—estimated for regulated businesses... It is widely accepted by Australian regulators that the value generated by franking credits is represented by the parameter gamma (γ), which is a product of two components:

- the fraction of imputation credits created that are assumed to be distributed to shareholders (F);
- the market value of imputation credits distributed as a proportion of their face value (θ).

Other regulators also interpret gamma as value to investors

31. In its rate of return guideline, the ERA determined a range for gamma of 0.25–0.39, based on a distribution rate of 0.7 and a range for the market value of imputation credits of 0.35–0.55. Similarly, in its recent weighted average cost of capital review the Independent Pricing and Regulatory Tribunal (IPART) assume a value for gamma of 0.25. IPART explain its approach to gamma in an its earlier imputation credit review as:

The generally accepted regulatory approach has been to define the value of imputation credits as the product of the distribution ratio (F) and the utilisation rate (θ): $\gamma = F \times \theta$, where:

- The distribution ratio (F) is defined as the value of imputation credits distributed by a firm as a proportion of the value of imputation credits generated by it in the period.
- The utilisation rate (θ) is defined as the value of imputation credits distributed to investors as a proportion of their face value.

2.5 AER REVISED POSITION IN THE RATE OF RETURN GUIDELINE

The rate of return guideline proposes a new interpretation of gamma

32. In its rate of return guideline explanatory statement, the AER proposes a new approach to determining gamma, based on a new conceptual framework. The AER states that it has “re-evaluated the conceptual task of estimating the value of imputation credits”. The AER then seeks to redefine gamma as “an estimate of the expected proportion of company tax which is returned to investors through utilisation of imputation credits”. The AER then estimates a value for gamma principally by reference to information on utilisation/redemption rates. As discussed further below in relation to theta, while the AER says that it relies on several sources of evidence including market value studies, only two pieces of evidence appear to be given any material weight. These two pieces (both of which are techniques for estimating the redemption rate) are:

- utilisation rates from tax statistics, and

11 ERA, Rate of Return Guideline: Meeting the requirements of the National Gas Rules, 16 December 2013, pp. 30–31.
15 AER, Explanatory Statement: Rate of Return Guideline, December 2013, p. 158.
• the ‘equity ownership approach’—which indicates the maximum proportion of investors that are eligible to redeem or utilise credits.

34. These are the only two sources of evidence for which the AER’s estimate of theta falls within the range of values indicated by the evidence.

35. Thus, although the AER states that it is assessing ‘an estimate of the expected proportion of company tax which is returned to investors through utilisation of imputation credits’, based on the way that the AER estimates this parameter in the rate of return guideline, we understand the AER is interpreting gamma as a measure of the proportion of total company tax payments accounted for by imputation credits that are redeemed, or that can be redeemed, by investors. In relation to this latter aspect, in effect the AER is seeking to answer the question:

Out of total company tax payments, what proportion is accounted for by the total face value of all imputation credits which can be redeemed?

New interpretation is a significant departure from previous regulatory practice

36. This new AER approach represents a significant departure from that taken by the Tribunal in Energex, and the approach of the AER both prior to and following that Tribunal decision. The AER’s new approach also represents a very significant departure from orthodox regulatory practice.

37. Orthodox regulatory practice is to measure the value of imputation credits, not simply the proportion that can be redeemed. Orthodox practice also recognises that the value of imputation credits is not the same as the face value of those credits that are redeemed or that can be redeemed. Rather, the face value of redeemed credits will provide no more than an upper bound for the true value to equity-holders. There are several reasons why one cannot simply assume that the value of imputation credits equals the face value of all credits that are redeemed. On the contrary, there is strong evidence (set out below) that the true value of imputation credits is significantly less than their face value.

New interpretation reflects a misinterpretation of the evidence, including Officer (1994) and Hathaway and Officer (2004)

38. In formulating this revised approach, the AER considers selective passages from the original Officer (1994) paper. Those passages do not support the approach suggested by the AER. As discussed below and in the accompanying expert report of accompanying expert report of Professor Stephen Gray, Officer’s work (including the later Officer and Hathaway (2004) paper) refers extensively to the value of imputation credits and his worked examples show that gamma is a value concept.

16 As discussed further below, the equity ownership approach only indicates the maximum set of investors eligible to redeem credits, by reference to the proportion of investors that are domestic. Within the set of domestic investors, there are likely to be some that are not eligible to redeem imputation credits, for example due to the 45-day rule.

17 Following the decision in Energex, the AER followed the Tribunal’s approach to estimating gamma in determinations in both the electricity and gas sectors (except in some electricity transmission determinations, where, under the previous NER, it was bound to adhere to its position in the SORI). Prior to the Tribunal decision in Energex, the AER had correctly recognised that gamma should be estimated as the value of imputation credits, but had made some errors (identified by the Tribunal) in estimating that value. For example, in its 2009 WACC Review Final Decision, the AER referred to gamma as representing the ‘value for imputation credits’, noting that “Standard regulatory practice in Australia is to incorporate a value for imputation credits in determining the appropriate company tax allowance (the ‘corporate income tax building block’) to include in the required revenues of regulated businesses” (AER, Final Decision: Electricity transmission and distribution network service providers – Review of the weighted average cost of capital (WACC) parameters, May 2009, p. 393).

19 SFG, An appropriate regulatory estimate of gamma, May 2014, [315]–[334], appendix 10.2.
39. The AER then goes on to consider the life cycle of tax cash flows, identifying that tax is either kept by the government or returned to the investor as a credit against personal tax. On page 143 of Annexure H to the rate of return guideline, the AER refers to this cash flow analysis, emphasising that it is concerned with the face value of imputation credits, and then says that the cash flow interpretation of the value of imputation credits is supported by the 2004 paper by Hathaway and Officer. However, by referring to only a select passage from Hathaway and Officer (2004), the AER misunderstands and misapplies the findings of that paper, which suggest completely the opposite effect of the statements in Annexure H to the rate of return guideline.

40. Importantly, the Hathaway and Officer (2004) paper referred to by the AER observes:

- first, that in the period 1988–2002 approximately $188B worth of imputation credits out of total tax collections of $265B have been distributed to shareholders, implying a distribution rate of 71 per cent, and
- secondly, that by using dividend drop off studies, it appears that the average value of distributed imputation credits is “about 50% of their face value”.

41. Hathaway and Officer (2004) then go on to conclude that the Australia-wide average gamma over the period 1988–2002 was 0.355, based on their estimates of the distribution rate (71 per cent) and the value of distribution imputation credits, as indicated by dividend drop-off analysis (50 per cent of face value). Thus, Hathaway and Officer (2004) clearly characterise gamma as reflecting the value of imputation credits, and provide an estimate that is consistent with this characterisation (i.e., an estimate based on dividend drop-off analysis.

42. The conclusion of Hathaway and Officer (2004) on this point is clear, when the passage quoted by the AER on page 143 of Annexure H to the rate of return guideline is read in its full context. In context, the relevant passage is as follows:

...it is quite important to recognise that the value factor of credits (the value of distributed credits) is not in itself the "gamma" factor used within the Officer WACC formulae, a point which is often confused or mis-represented. The gamma factor in the various Officer WACC formulae represents that part of the tax paid by companies as company tax but is in reality a pre-payment of personal tax. Because we typically estimate costs of capital after company tax but before personal tax, the portion of company tax prepayments captured as pre-payment of personal tax (ie gamma) is a cash flow that has to be added to shareholders' pre-personal tax cash flow. The Australia-wide average gamma over all companies and over the entire period 1988-2002 is 0.355. That is, of the $265 billion ostensibly collected as company tax, about 50% of the distributed $188 billion, namely $94 billion, is valued in the market place as either being a pre-payment of tax liabilities or, recently for some entities, redeemable as cash. So the effective company tax collection has been about $171 billion. **Gammmma is not the value of distributed credits alone. It is the compounding of the two factors—the fraction of tax distributed as credits multiplied by the value of distributed credits.** [Emphasis added]

43. Thus, when in the passage cited by the AER, Hathaway and Officer state that “it is quite important to recognise that the value factor of credits (the value of distributed credits) is not in itself the “gamma” factor used within the Officer WACC formulae”, they do not mean that examining the value of distributed credits is incorrect. Rather, they simply mean that the gamma factor is a combination of the distribution rate and the value of those distributed credits to investors. This misuse of the Hathaway and Officer paper is a serious error in Annexure H to the rate of return guideline.

Cash flow analysis and government tax take is not relevant to interpreting gamma

44. More generally, the AER’s cash flow analysis, and consideration of how much tax is retained by the government, is a complete distraction from the issue that arises under the NGR. Corporate income tax is a real cost to the company. It is not merely theoretical. It reduces (usually by 30 per cent) the amount of income available to shareholders (either held in the company or distributed). It therefore reduces the return that otherwise would be available to investors.

45. However, because the payment of this corporate tax may in due course confer a benefit on investors, it is relevant to identify the value and extent of that benefit, because it is a benefit that derives from the payment of corporate income tax by the company and it affects the investor’s overall return from the investment. It is only the investor’s return that is relevant (not the tax earned by the government, or the face value of credits). It is the investor’s return—i.e., the value they obtain from their investment, and whether it meets their required return—that governs whether they would choose to invest in the entity. To consider the face value of credits, or whether an investor is eligible to receive credits, does not address the correct issue.

It is unreasonable to assume that every $1 of imputation credits is worth $1 to investors

46. Finally, on page 143 of Annexure H, the AER states that using the full face value of imputation credits is “consistent with the common assumption that for simplicity, dividends should be assumed to be worth their face value in the Officer framework”. It might be a reasonable (albeit simplifying) assumption that a cash dividend paid directly into an investor’s bank account is worth the amount of the dividend. However, it is an entirely unreasonable assumption to assume that every $1 of imputation credits is worth $1 to investors.

47. As discussed below in relation to theta, there are compelling reasons why every $1 of imputation credits is not worth $1 to investors. One cannot assume that the value of imputation credits to investors is equal to their face value; rather, the face value of credits represents no more than an upper bound for their true value to investors.

2.6 CONCLUSION ON THE CORRECT APPROACH TO DEFINING GAMMA

Interpreting gamma as a value to shareholders is the right approach

48. The correct approach under the NGR, having regard to the statutory objective, is to determine gamma as the value to equity-holders of imputation credits. This is the interpretation that is specified by the NGR, when properly interpreted, and which best promotes the NGO because it provides for an adjustment to the income tax building block for imputation credits that properly reflects their value to investors.

49. This approach aligns with:

- the proper role of gamma within the NGR building block framework, and the objectives of that framework as embodied in the NGO
- the approach to estimating other rate of return parameters, which are directed at estimating returns required by investors, rather than the face value of cashflows
- the treatment of gamma in the financial and economic literature (particularly Officer (1994) and Monkhouse (1997))
- the approach taken by the Tribunal in Energex, and
- previous AER practice (both following the decision of the Tribunal in Energex, and prior to that decision) and the practice of other regulators.

50. The analysis of the payout ratio and theta set out below follows this approach.
3. PAYOUT RATIO

3.1 PREVIOUS AER/TRIBUNAL APPROACH TO THE PAYOUT RATIO

51. In all decisions over the past three years, the AER had for a brief period adopted a payout ratio of 0.7 based on ATO data on the distribution of imputation credits.

52. The AER’s approach to the payout ratio followed that taken by the Tribunal in Energex. Prior to that decision of the Tribunal, the AER adopted a value for the distribution rate of 1.0.24 However, in the course of the Tribunal proceedings in the Energex matter, the AER accepted that there was in fact no evidence to support a distribution rate higher than 0.7.25 Accordingly, in the Energex matter, and in all decisions of the AER since, a distribution rate of 0.7 was used. This same value has also been consistently adopted by other regulators, such as the ERA and IPART.

3.2 AER POSITION IN THE RATE OF RETURN GUIDELINE

53. The AER proposed a distribution rate of 0.7 in its rate of return guideline.

54. Consistent with its previous approach, the AER estimates the distribution rate as a market-wide parameter, using ATO data. The AER refers to ATO data over a 23-year period (from 1987-88 to 2010-11), which indicates a cumulative distribution rate of 0.7.

55. In its Explanatory Statement, the AER refers to some evidence that suggests that the distribution rate may be rising over time, but says this evidence is currently inconclusive.26

3.3 LATEST EVIDENCE ON THE PAYOUT RATIO

56. The most recent evidence on the distribution rate confirms that a value of 0.7 is appropriate. This evidence does not suggest that the payout ratio is increasing over time as suggested by the AER in its rate of return guideline explanatory statement.

57. NERA’s recent report on the payout ratio for the ENA concludes that:27

- the cumulative payout ratio up until 2010-11 drawn from tax statistics is 0.69, and
- there is no evidence that the payout ratio has increased over time.

58. The findings of the NERA report are consistent with earlier studies.28

25 Application by Energex Limited (Distribution Ratio (Gamma)) (No 3) [2010] ACompT 9, [2].
3.4 CONCLUSION ON THE PAYOUT RATIO

JGN therefore proposes a payout ratio of 0.7, consistent with the AER’s rate of return guideline. JGN agrees that the best estimate of the payout ratio at the present time is 0.7.
4. THETA

4.1 PREVIOUS AER/TRIBUNAL APPROACH TO THETA

The AER previously interpreted theta (and therefore gamma) as value to investors

60. Prior to issuing its rate of return guideline, the AER used an approach to theta that reflected an economically correct interpretation of the role of gamma in the building block framework. In measuring the value of distributed imputation credits, the AER sought to measure their market value, or value to equity-holders, rather than simply their redemption rate.

61. The AER correctly recognised in its May 2009 Statement of Regulatory Intent on WACC parameters (SORI) that theta should reflect the value of imputation credits to investors. As such, the AER gave real weight to market value studies in estimating theta. Further, the AER correctly observed that tax statistics could provide no more than an upper bound for theta, since there were various factors that may reduce the value of credits to investors (below face value), including risk of investment and the time value of money.\(^{29}\)

62. In the SORI, the AER determined a value for theta of 0.65. This value represented approximately the midpoint between its estimate of the market value of imputation credits (0.57) and its ‘upper bound’ value from tax statistics (0.74). This value was subsequently applied in a number of AER decisions, including for ETSA Utilities (now SA Power Networks), Energex, Ergon Energy and JGN.

The Tribunal also interpreted theta (and therefore gamma) as value to investors

63. In its review of the AER’s determinations for ETSA, Energex and Ergon Energy, the Tribunal maintained the AER’s intent of estimating a market value for imputation credits. However, the Tribunal identified a number of deficiencies in the AER’s approach to measuring that market value, including:

- Incorrectly using tax statistics. Given that the AER had identified tax statistics as providing an upper bound for theta only, it was illogical to average the estimate from tax statistics with the point estimate of market value from dividend drop-off analysis. The Tribunal stated that tax statistics could provide no more than an upper bound check on an estimate of theta (i.e., to check that the market value estimate is not too high).\(^{30}\)

- Using a deficient dividend drop-off analysis. There were deficiencies in the dividend drop-off analysis that had been relied on by the AER.

64. In order to resolve these issues, the Tribunal:

- sought a state-of-the-art dividend drop-off study, to provide an estimate of the market value for imputation credits
- found that the SFG (2011) study provided the best available estimate of market value, and
- set a value for theta of 0.35, based on the results of the SFG (2011) study.\(^{31}\)

\(^{30}\) Application by Energex Limited (No 2) [2010] ACompT 7, [91]–[92].

\(^{31}\) Application by Energex Limited (Gamma) (No 5) [2011] ACompT 9.
The Tribunal interpretation was adopted by the AER and other regulators

65. The Tribunal position was adopted by the AER in subsequent determinations in both the electricity and gas sectors (except in some electricity transmission determinations, where, under the previous NER, it was bound to adhere to its position in the SORI).

66. The position of the Tribunal was also adopted by other regulators, including the ERA and IPART.32

4.2 AER POSITION IN THE RATE OF RETURN GUIDELINE

The AER uses a new interpretation in the rate of return guideline

67. As discussed above, the AER takes a very different approach to estimating theta in the explanatory statement to its rate of return guideline, and by implication in specifying a value for gamma in the rate of return guideline itself.

68. Rather than seeking to estimate the value of distributed imputation credits, the AER instead seeks to estimate what it refers to as “the before-personal-tax reduction in company tax per one dollar of imputation credits that the representative investor receives”. Elsewhere in the explanatory statement, the AER refers to its conceptual definition of theta as “the expected ability of equity-holders to use the imputation credits they receive to reduce their personal tax”.

69. The AER says that it has estimated theta (in accordance with its definition) based on the body of utilisation rate estimates, having regard to its strengths and weaknesses.

The AER considers a range of evidence, but places only real weight on measures of redemption

70. The AER considers that the relevant body of utilisation rate estimates includes the following:

- **The equity ownership approach**—which suggests an estimate of theta between 0.7 and 0.8. This approach involves estimating the value-weighted proportion of eligible investors (i.e., those eligible to redeem imputation credits) out of all investors in the Australian market. The AER states that this approach provides a “conceptually sound” estimate of the representative investor’s expected utilisation rate, in the sense that it aligns with the AER’s conceptual definition of theta.

- **Tax statistics estimates**—which suggest an estimate of between 0.4 and 0.8. The AER says that these estimates report “the actual dollar benefit to Australian taxpayers from their imputation credits”. It is said that tax statistics estimates align closely with the AER’s conceptual definition of the utilisation rate, albeit with some slight differences due to differences between the set of investors who actually redeem credits and the set of eligible equity-holders. The AER notes reported problems with data quality and consistency.

- **Implied market value estimates (including from dividend drop-off studies)**—which suggest an estimate between 0 and 0.5. However, the AER says that these studies do not align with the AER’s conceptual definition of the utilisation rate, as well as suffering from interpretation problems (e.g., the AER states that the results of these studies are sensitive to methodological and data choices, and that there is no consensus on all aspects of the methodology). The AER says that is has “somewhat less regard to this approach”.

32 IPART, Review of imputation credits (gamma): Research – final decision, March 2012; ERA, Rate of Return Guideline: Meeting the requirements of the National Gas Rules, 16 December 2013, pp. 30–31. As noted above, the ERA has determined a range for gamma of 0.25–0.39, based on a distribution rate of 0.7 and a range for the market value of imputation credits of 0.35–0.55.
• The conceptual goalposts approach—which the AER says indicates a value for theta between 0.8 and 1. This approach involves estimating a utilisation rate range that would generate a ‘reasonable return on equity’ in the majority of scenarios between full capital segmentation and full integration.

71. The AER concludes, based on its interpretation of the above evidence, that a reasonable estimate of theta is 0.7. The AER does not state precisely how it weighted each piece of evidence other than stating that it has “somewhat less regard” to implied market value studies. Indeed, it is apparent that little or no weight is given to implied market value estimates, given that the AER’s theta estimate falls well outside the range indicated by market value studies. It seems that the AER has almost entirely relied upon the equity ownership approach and tax statistics estimates, reflecting its view that these two methods best reflect its new conceptual definition of theta.

72. The AER’s view of the relevant evidence, and their conclusion on theta, is summarised in Figure 4–1 below (Figure 9.1 from the rate of return guideline explanatory statement).

Figure 4–1: AER view of relevant evidence on theta

Source: AER, Explanatory Statement: Rate of Return Guideline, December 2013, Figure 9.1
The AER recognises that it is using a new interpretation of theta (and gamma)

73. The AER acknowledges its altered approach in the explanatory statement to its rate of return guideline, stating:33

 We acknowledge that we have previously rejected this conceptual framework in favour of a market value framework, similar to that espoused by the ENA and APIA. However, our explanatory statement set out how we had systematically re-evaluated the entire body of evidence on gamma, and why we now reached a different conclusion on the appropriate conceptual framework.

74. Under the AER’s new conceptual approach, theta is defined as “the extent to which investors can use the imputation credits they receive to reduce their personal tax”.34 In effect, the AER is simply seeking to estimate the proportion of distributed credits that can be redeemed. The AER is not seeking to estimate the proportion that is in fact redeemed, or (more importantly) the value of redeemed credits to investors.

But, this re-interpretation is not supported by the NGO, or economic theory or expert views

75. JGN considers that this re-interpretation of theta is not supported in light of the statutory objective and context for including gamma in the building block framework. For the reasons set out above, theta must be estimated as the value of distributed imputation credits to equity-holders. This is the conventional and orthodox approach to estimating theta. It is also the approach that best gives effect to the NGO, as it recognises the value to equity-holders of imputation credits and provides for overall returns that promote efficient investment.

76. JGN is not aware of any economic theory or expert views that support the AER’s novel and unorthodox approach to interpreting theta. Economic experts generally agree that theta should be a measure of the value of imputation credits, not the extent that they can be redeemed.

77. In the accompanying expert report, Professor Stephen Gray explains the theoretical basis for defining theta as the value of imputation credits to investors. Professor Gray also notes that the AER is alone in its conceptual definition of theta, and that none of the experts cited by the AER support its position.35

4.3 CORRECT APPROACH TO ESTIMATING THETA

78. The approach to estimating theta must reflect what this parameter is seeking to measure—the value that is placed on those imputation credits if they are utilised.

4.3.1 EVIDENCE RELEVANT TO DETERMINING THE VALUE OF IMPUTATION CREDITS

The only relevant evidence for estimating theta is market studies

79. Only one of the sources of evidence referred to by the AER in its rate of return guideline—implied market value estimates—provide a point estimate of the value of distributed imputation credits. Market value studies, and particularly dividend drop-off studies, measure the value of imputation credits to equity-holders as reflected in stock prices.

80. None of the other sources of evidence referred to by the AER provide a point estimate for the value of imputation credits, although some may indicate the upper bound for this value.

34 AER, Explanatory Statement: Rate of Return Guideline, December 2013, p. 159.
35 SFG, An appropriate regulatory estimate of gamma, May 2014, appendix 10.2.
4.3.2 ROLE OF UTILISATION/REDEMPTION DATA

Measures of utilisation or redemption provide only an upper bound check on theta estimates

81. Utilisation rates (if measurable) may, at best, indicate the upper bound for the value of distributed credits. Clearly, the value of distributed credits can be no more than the total face value of those credits that are redeemed by investors. However, the value of imputation credits to equity-holders may be significantly less than the face value of those that are redeemed, and as such one cannot assume that the rate of redemption represents the value of credits redeemed. As set out below, the measures of utilisation rates used by the AER are not accurate or reliable. Further, a key piece of evidence relied upon by the AER to derive a utilisation rate is not a measure of utilisation at all.

82. The equity ownership approach is above any upper bound because not all imputation credits distributed to Australian investors can be utilised (for example, because of the 45-day rule36), and a smaller percentage still are actually utilised. The equity ownership approach is therefore not a proper measure of theta, and this is so even on the AER’s revised approach.

4.3.3 REASONS FOR THETA BEING LESS THAN THE FULL FACE VALUE OF DISTRIBUTED CREDITS

There are good reasons why the value of imputation credits is lower than their face value

83. There are several reasons why the value of credits may be expected to be lower than rates of redemption or potential for redemption. A number of these reasons were identified by Professors McKenzie and Partington, in a March 2011 report to the AER that is referred to in the rate of return guideline explanatory statement. They are also explained in detail in the accompanying expert report of Professor Stephen Gray. These include:37

- **45-day rule**—since July 2000, Australian tax rules have prevented investors from redeeming imputation credits where they hold shares for only a short period of time around the ex-dividend day. The 45-day rule (or ‘holding period rule’) requires traders to hold a share for at least 45 days around the ex-dividend day in order to gain entitlement to the imputation credit. Beggs and Skeels (2006) note that the introduction of this rule (along with other changes introduced round the same time) reduced the capacity of important classes of investors to use imputation credits.38 It has been estimated that the 45-day rule has about a 5–10 per cent impact on the redemption rate.39

- **Transactions costs**—transactions costs associated with redemption of credits include requirements to keep records and follow administrative processes. This contrasts with realisation of cash dividends, which are paid directly into bank accounts. The transactions costs associated with redemption of imputation credits reduce their value to investors.

36 The effect of the 45-day rule is acknowledged by the AER in its rate of return guideline explanatory statement (AER, Explanatory Statement: Rate of Return Guideline, December 2013, Appendix H, p. 137). It has also been noted by the AER’s consultants, Professors McKenzie and Partington (Michael McKenzie and Graham Partington, Report to the AER: Response to questions related to the estimation and theory of theta, March 2011, p. 16).

• **Time value of money**—there is typically a significant delay between credit distribution and the investor obtaining a tax credit. This may be a period of several years in some cases, for example where credits are distributed through other companies or trusts. Over this period, the value of imputation credits to the investor is expected to diminish, due to the time value of money.

• **Portfolio effects**—portfolio effects refer to the impact of shifting the investor’s portfolio away from the optimal construction (including overseas investments) in order to take advantage of imputation. An investor who would otherwise invest in some overseas companies and/or domestic companies that do not pay franked dividends (to obtain the optimal risk-adjusted return from the overall portfolio) might choose instead to reallocate some of that investment to Australia that pay franked dividends to obtain the benefit of imputation credits. The investor bears the cost of moving away from their optimal portfolio weighting, but would rationally bear this cost if it was less than the value of the additional imputation credits they received. An investor would rationally continue such a reallocation towards franked dividend paying stocks until the marginal value of an additional credit was exactly offset by the marginal cost of moving further away from the investor’s optimal portfolio. This last imputation credit would be of negligible net value to the investor, because its value would be offset by the cost of moving further away from the investor’s optimal portfolio. That is, on average, the value of the imputation credits will be less than the face value. To the extent that an investor incurs the cost of deviating from their otherwise optimal portfolio allocation simply to increase the extent that they can redeem imputation credits, this lost value is reflected in a lower net valuation of the imputation credits. By analogy, a person may consider moving to a different city where salaries and cost of living are both higher. The person would not be better off by the increment in their salary—any increase in the cost of living would need to be netted off. These portfolio effects are further explained in the accompanying expert report of Professor Stephen Gray.

84. The impact of each of the above factors is illustrated in Table 4–1. While the estimated impacts are illustrative only, they are based on available information on the likely impact of each factor where indicated. The actual impact of each factor is potentially greater than is indicated in the chart, implying a lower value for theta.
85. It is of course not necessary to estimate each of these impacts individually. Rather, market value studies can be used to directly estimate the value of credits to investors, which will take into account all of these factors.

86. The fact that market value estimates of theta are consistently significantly lower than the face value of distributed credits is consistent with the powerful reasons why actual value is less than face value and indicates that these factors do indeed have a bearing on the value of credits.

4.3.4 PROBLEMS WITH MEASURING UTILISATION RATES

ATO data used to estimate utilisation/redemption is unreliable

87. Even if utilisation/redemption rates were relevant to determining a point estimate of theta, the very significant unresolved problems identified with the tax data mean that no weight should be placed on the utilisation rates that are estimated using this data. In a recent report for the ENA, Dr Neville Hathaway identifies very significant unexplained discrepancies in the ATO data used to estimate utilisation rates, including:

- whereas the ATO franking account balance data indicates net credit distribution over the period 2004–2011 of $292.2 billion, the ATO company dividend data indicates much lower net credit distribution over this period, of approximately $204.7 billion, and

- due to this large discrepancy, very different estimates of the credit utilisation rates may derive from the ATO data, depending on whether the franking account balance data or the company dividend data is used to estimate the quantum of credits distributed—if the company dividend data is used then the utilisation rate is 62.3 per cent over the period 2004–2011, but if franking account balance data is used, the utilisation rate falls to 43.7 per cent.

Dr Neville Hathaway, Imputation Credit Redemption ATO data 1988–2011: Where have all the credits gone?, September 2013, p. 6.
88. The very significant discrepancies identified by Dr Hathaway remain unexplained, despite queries being lodged with the ATO. In light of these unexplained discrepancies, Dr Hathaway concludes that the ATO statistics cannot be relied upon for making conclusions about the utilisation of franking credits. The AER’s expert, Associate Professor Lally, likewise has stated that “the best that can be said about all this is that the redemption rate is uncertain”.

89. The AER uses three estimates for utilisation rates: 0.44, 0.62 and 0.81, which it rounds to range of 0.4–0.8. The upper end of this range is derived from the Handley and Maheswaran (2008) utilisation rate study.

The Handly and Maheswaran results relied on by the AER are based on unrealistic assumptions

90. However, the relevant figure from Handley and Maheswaran utilised by the AER is not the product of a review of taxation statistics or any other data on utilisation rate. For the period 2001–2004 (the period for which the AER relies on this study), no empirical estimate of the actual utilisation rate is provided. Rather, Handley and Maheswaran simply assume that all credits received by resident individuals and funds will be used.

91. The authors note, at 86–87, that for resident individuals and resident funds they have assumed zero excess credits (i.e., 100 per cent usage of credits received) for the years 2001-2004, “consistent with investor rationality”. This is reflected in Table 4, where the utilisation rate for resident individuals and resident funds is set to 1.00 for each of the years 2001–2004. It is not a measurement at all, but an assumption.

92. The reason that the Handly and Maheswaran figure is 0.81 rather than 1 is only because the assumption is then weighted between domestic and foreign investors. Accordingly, this study cannot be relied upon to provide information on the actual utilisation rate in the post-2000 period and should be disregarded by the AER. That means that the AER’s range for utilisation rates of 0.4–0.8 is not supported, and could only be approximately 0.4–0.6, or more accurately 0.44–0.62.

The only relevant Handly and Maheswaran results suggest a materially lower utilisation/redemption rate

93. The only available empirical evidence on the actual utilisation rate in the post-2000 period is Dr Hathaway’s study, which indicates a utilisation rate of 44 per cent or 62 per cent over the period 2004–2011, depending on which ATO data is used. However, given Dr Hathaway’s very strong reservations regarding the reliability of this data (in which he cautions against anyone relying on those parts of his earlier reports that focused on ATO statistics), these estimates should be disregarded.

4.3.5 MEASURING EQUITY OWNERSHIP

94. In relation to the equity ownership rates referred to by the AER, there are two important points worth noting.

Equity ownership of Australian entities by Australian residents is less than 70 per cent

95. The first is that rates of domestic ownership in Australian entities are in fact lower than that stated by the AER. Professor Gray analyses this issue in his report. The figure of 70 per cent used by the AER is drawn from an ABS figure from 2007. However, the ABS data suggests that both before and since, the percentage of Australian ownership is lower (and the percentage of foreign ownership commensurately higher). Further, the

41 Dr Neville Hathaway, Imputation Credit Redemption ATO data 1988–2011: Where have all the credits gone?, September 2013, p. 5. It should be noted however that while the data in relation to utilisation appears unreliable, the ATO data on distribution of credits is reliable, and produces stable estimates of the distribution rate over time.

42 Lally, Estimating Gamma, 25 November 2013, p. 15

43 AER, Explanatory Statement: Rate of Return Guideline, December 2013, p. 175

2007 statistics referred to by the AER include equity in entities that are not relevant for the purpose of estimating theta, such as the central bank.

96. Based on the most recent ABS data, Professor Gray estimates that the percentage of foreign ownership is now around 45 per cent. This is confirmed by a recent (2013) estimate from the ASX, which indicates that foreign ownership now stands at 46 per cent. A Reserve Bank of Australia study in 2010 recorded the increase in foreign ownership after 2007, brought about by a number of matters including very significant capital raisings in 2008 and 2009 as a result of the GFC.

Equity ownership statistics set an upper bound for estimates of theta

97. The second point to note is that these domestic equity ownership rates do no more than indicate a figure that must be higher than theta, given the various reasons why domestic investors cannot and do not fully utilise imputation credits (rules preventing some investors from redeeming, transaction costs, and so forth), not to mention reasons why resident investors do not fully value the credits that they redeem.

98. As noted, the figure for equity ownership (approximately 55 per cent) is no more than an upper bound for theta. This implies that theta must be less than 0.55.

4.3.6 ROLE OF THE AER’S ‘CONCEPTUAL GOALPOSTS’ APPROACH

The conceptual goalposts approach says nothing about the market value of imputation credits

99. JGN considers that the ‘conceptual goalposts approach’ provides no relevant information on the market value of imputation credits.

100. The AER’s derivation of its ‘conceptual goalposts’ is not fully explained in the explanatory statement to its rate of return guideline. While the conceptual framework for this approach appears to originate from Associate Professor Lally, the AER states in its rate of return guideline explanatory statement that it has undertaken further analysis using the Lally framework, in order to refine the estimates. It is not explained how the AER determined its goalposts, nor is it clear what is deemed a ‘reasonable’ return on equity in this context, or what is meant by a ‘majority’ of permutation scenarios (i.e., whether this is just a bare majority, or most scenarios).

The conceptual goalposts approach, as applied by the AER, has some issues

102. JGN has a number of concerns with how the Lally conceptual framework is used by the AER to determine ‘goalposts’ for theta, including:

46 SFG, An appropriate regulatory estimate of gamma, May 2014, appendix 10.2.
49 Lally, Estimation of gamma, November 2013, pp. 38–47.
• **Assumptions not based on empirical evidence**—at a general level, this approach requires assumptions about the required return on equity in a range of hypothetical scenarios. As these hypothetical scenarios do not reflect reality, these assumptions can have no basis in empirical evidence.

• **Assumptions are debateable**—certain assumptions made by Associate Professor Lally about the required return on equity in certain scenarios are highly debateable at best. In particular, the assumption that the risk-free rate would be the same in the full segmentation and full integration scenarios would seem implausible, given that yields on government bonds will almost certainly be affected by demand from foreign investors.

• **Assumes full value of imputation credits to those that receive them**—the values for theta in each of the scenarios appear to assume that imputation credits are fully valued by all investors who receive credits and are eligible to redeem them—this is the only way that a theta value of 1.0 could be derived in the ‘full segmentation’ scenario. For the reasons set out above, this assumption is inconsistent with practical and empirical reality.

103. In any event, neither of the theoretical goalpost values identified by the AER provide any relevant information on actual value of theta for investors in the AER’s defined market (being the Australian domestic market, recognising the presence of foreign investors to the extent that they invest in the Australian market\(^\text{52}\)). Both values are derived based on extreme theoretical assumptions about the investor population. Neither value reflects the actual value of imputation credits to the relevant investor population.

4.3.7 CONCLUSION—THE CORRECT APPROACH TO ESTIMATING THETA

The only relevant evidence on the value of theta is market value evidence

104. For the reasons set out above, the only source of evidence that can provide a point estimate of theta is market value evidence. This is the only available evidence that can indicate the actual value of imputation credits to investors.

105. Further, for the reasons set out above, the market value evidence produces a figure for theta that is plausible and reasonable having regard to the reasons why credits are not fully utilised or fully valued: see Figure 4–2 above.

106. To the extent that evidence of utilisation or redemption rates is used, this can only indicate the upper bound for theta. In other words, utilisation or redemption rates can only confirm that estimates from market value evidence are not too high.

107. This approach is depicted in Figure 4–3.

\(^{52}\) In the Rate of Return Guideline Explanatory Statement, the AER states that, consistent with the 2009 WACC review, it proposes to define the market as the Australian domestic market, recognising the presence of foreign investors to the extent that they invest in the Australian market (AER, *Explanatory Statement: Rate of Return Guideline*, December 2013, p. 161).
4.4 CURRENT MARKET VALUE EVIDENCE

Market value studies provide evidence of the value placed on imputation credits by investors, as reflected in the price they are willing to pay for shares.

4.4.1 METHODS FOR MEASURING MARKET VALUE

Dividend drop-off studies currently provide the best estimate of market value

The most common form of market value study is the dividend drop-off study. This type of study estimates investors’ valuation of dividends and imputation credits, by reference to the change in stock prices when dividends and imputations credits are distributed.

There are potentially other methods of estimating investors’ valuation of imputation credits. For example, analysis of pricing of derivative instruments, such as futures contracts, can be used to infer a value for dividends and imputation credits. Alternatively, if there was a market for trading of imputation credits, a market price could be observed.

However, these alternative methods are not yet as well developed and have not yet been as thoroughly examined as the dividend drop-off measurement method. In the case of the market price observation method, this is largely because Australian tax laws prevent the trading of franking credits, meaning that a market price cannot be directly observed. Some of these alternative methods are discussed briefly below.

The best developed and most widely accepted method for estimating the value of imputation credits to investors is the dividend drop-off method, and we therefore give primary weight to this method in determining a value for

53 These studies are based on a hypothesis that the difference between the futures prices and the cash price of an individual stock or stock-index at any point in time will be a function of the financing cost, and the value of dividends and franking credits over the period to maturity. This hypothesis, and econometric techniques used to derive estimates of theta based on this hypothesis, are explained in detail in: Cannavan, Finn and Gray (2004), *The value of dividend imputation tax credits in Australia*, 73 Journal of Financial Economics 167.
theta. This method has been developed over a number of years, with estimation models subject to a high level of scrutiny and careful refinement.

4.4.2 RELEVANT DIVIDEND DROP-OFF STUDIES

113. The AER identifies a number of recent dividend drop-off studies in its rate of return guideline explanatory statement. These studies cover a various time periods and each use different methodologies.

There are a number of dividend drop-off studies, but they do not all provide the same quality of evidence

114. However, not all dividend drop-off studies should be given equal weight, given the differences in quality, scrutiny, methodology, data and time periods covered. Rather, the most relevant dividend drop-off study or studies need to be identified, having regard to the strengths and weaknesses of each. In particular, the choice of relevant study (or studies) must take into account:

- the time period covered by each study, and the extent that investors’ valuation of credits during that time period is likely to reflect current valuations
- the robustness of the methodology and data relied on, and
- the independent scrutiny to which the study has been subjected.

115. In relation to time period, only studies covering the post-2000 period should be taken into account. Significant changes to Australian tax laws came into effect on 1 July 2000, which almost certainly caused a structural break in the way investors valued imputation credits. The AER previously recognised this, causing it to (correctly) give no weight to pre-2000 estimates.54

116. There are five dividend drop-off studies covering the post-2000 period, which are identified in Table 4–2 below. Of these five studies:

- Two SFG studies—these use the most robust methodology and data and have been subject to the most thorough scrutiny (including by the AER and the Tribunal). The first of these studies was undertaken at the request of the Tribunal in the Energex matter, and its methodology was specifically designed to overcoming shortcomings in previous studies (including the Beggs and Skeels (2006) study).
- Beggs and Skeels (2006)—this study has very significant methodological shortcomings, many of which were identified by the Tribunal in the Energex matter.56 As noted above, the first of the SFG studies was designed specifically to overcome shortcomings in the Beggs and Skeels (2006) methodology, and the second study continues with the same (improved) methodology.
- Vo et al (2013)—this study uses a similar methodology to the SFG studies, except that it also reports results with the standard market adjustment removed.57 The results without this adjustment are biased due to exogenous factors that may drive broader market over the ex-dividend day, and according should be given no weight. The results produced by Vo et al with the market adjustment are precisely in line with the results of the SFG studies.

54 AER, Final Decision: Electricity transmission and distribution network service providers – Review of the weighted average cost of capital (WACC) parameters, May 2009, pp. 428–430. Associate Professor Lally also appears to recognise that studies based on pre-2000 data should be given limited weight, saying results of these studies “are of much less interest as estimates of the current value of [theta]” (Lally, Estimation of gamma, November 2013, p. 22).

• Minney (2010)—this study produces similar results to the SFG and Vo et al (2013) studies. However, the author recommends that the results be interpreted with caution due to large standard errors associated with the estimates of franking credit values. This caution does not apply to the SFG studies.

Table 4–1: Dividend drop-off studies covering the post-2000 period

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Theta estimate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo et al (2013)</td>
<td>0.35 – 0.55 (But correctly 0.35)</td>
<td>Methodology similar to SFG (2011) and SFG (2013). However, additional methodological permutations are run, including to exclude the standard market adjustment. As noted by SFG, the standard approach in dividend drop-off studies is to assume that, but for the dividend, the stock price would have followed the movement in the broad market over the ex-dividend day. That is, if the broad market index increases by 2 per cent over the ex-dividend day, it is assumed that, but for the dividend, the particular stock would also have increased by 2 per cent. An adjustment is therefore made in most dividend drop-off studies to remove the effect of movements in the broader market. Vo et al (2013) report results both with the standard market adjustment, and without it. The results without this adjustment will be biased due to exogenous factors that may drive the broader market over the ex-dividend day, and according should be given no weight. The results produced by this study with the market adjustment are precisely in line with the results of the SFG studies.</td>
</tr>
<tr>
<td>SFG (2011)</td>
<td>0.35</td>
<td>Undertaken at the request of the Tribunal in the Energex matter, with a methodology designed to overcoming shortcomings in previous studies (including the Beggs and Skeels (2006) study). In particular, the functional form was designed to overcome issues of heteroscedasticity and the dataset was compiled with a view to identifying and correcting erroneous observations. Accordingly, the results of this study should be given precedence over those of earlier studies such as Beggs and Skeels (2006). The point estimate reflects the authors’ view as to what is the most stable and robust function form (referred to as ‘Model 4’). This is a yield model accounting for heteroskedasticity through a weighting variable that accounts for stock volatility (inverse stock return variance). Using this model produces an average theta estimate of 0.35. The results produced by this model specification are supported by the results of other specifications.</td>
</tr>
<tr>
<td>Minney (2010)</td>
<td>0.39</td>
<td>The author of this study recommends that his results should be interpreted with caution, due to large standard errors associated with the estimates of franking credit values.</td>
</tr>
<tr>
<td>Beggs and Skeels (2006)</td>
<td>0.57</td>
<td>Significant shortcomings in the methodology used in this study were identified by the Tribunal in the Energex matter. As noted above, the first of the SFG studies was designed specifically to overcome these shortcomings. The most significant limitation of this study relates to the functional form used for the regression analysis. Moreover, the methodology and data used for this study could not be subject to same level of scrutiny as the SFG and Vo et al (2013) studies because the underlying data, code and filters were not (and are still not) available for review. Clearly, this study is also not as recent, and relies on an older and more limited dataset. Whereas the SFG (2013) study uses data up to 2012, this study only covers the period up to 2004.</td>
</tr>
</tbody>
</table>

The SFG studies provide the best estimate of market value, and these give a theta estimate of 0.35

117. JGN therefore considers that the best estimate of the value of imputation credits, as reflected in share prices, is 0.35. This is value for theta recommended in the expert report of Professor Stephen Gray.59

118. The proposed value for theta is based on the results of the most recent and robust dividend drop-off analysis (the SFG (2013) and SFG (2011) studies). The same result is produced by the Vo et al (2013) study when the standard market adjustment is applied. For the reasons set out above, JGN considers that the Beggs and Skeels (2006) and Minney (2010) studies should not be given any weight.

Concerns with the SFG studies have been thoroughly addressed

119. The SFG methodology, which is largely replicated by Vo et al (2013) has been carefully reviewed and amended where necessary to address concerns expressed by the AER and its consultants. Each of the concerns that have been raised by the AER and its consultants in relation to this methodology were thoroughly addressed. Professor Gray’s response to each of these concerns is set out in detail in its report, and summarised in Table 4–2.

Table 4–2: SFG responses to methodological issues raised by the AER and its consultants60

<table>
<thead>
<tr>
<th>AER issue</th>
<th>SFG response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased or abnormal levels of trading around ex-dividend day may potentially affect empirical estimates.</td>
<td>SFG notes that to the extent this effect is material, it results in the dividend drop-off (and therefore the theta estimate) being higher than it otherwise would be. This is because the increase in trading around ex-dividend day is driven by a subset of investors who trade shares to capture the dividend and imputation credit and who are therefore likely to value imputation credits highly (i.e., higher than the average investor). These investors tend to buy shares shortly before payout of dividends (which pushes up the share price) and tend to sell shortly after (which pushes down the share price), the overall effect of which is to increase the size of the price drop-off.</td>
</tr>
<tr>
<td>Stability of estimates.</td>
<td>While the estimates produced by Vo et al exhibit some instability, SFG’s estimates are highly stable and robust to the removal of influential observations.</td>
</tr>
<tr>
<td>Allocation of value as between cash and imputation credits.</td>
<td>This issue is addressed in the expert report of Professor Stephen Gray.61 As noted by Professor Gray, empirical evidence provides a very clear and consistent view of the combined value of cash and imputation credits—this evidence indicates that the combined value is one dollar. The relevant evidence includes the studies by SFG (2011 and 2013) and Vo et al (2013) referred to above. Allocation can be made based on this clear evidence as to combined value of the cash/credit package. It should be noted that the combined value of the cash and credit package implied by the AER’s analysis is inconsistent with this empirical evidence. The AER’s theta value, when combined with a value for cash dividends of one dollar, implies a value for the package of $1.30 (1 x 1 + 0.7 x 0.43). However, as noted above, the empirical evidence consistently indicates that the combined value of this package is one dollar.</td>
</tr>
</tbody>
</table>

59 SFG, An appropriate regulatory estimate of gamma, May 2014, [220], appendix 10.2.
60 SFG, An appropriate regulatory estimate of gamma, May 2014, [149]–[170], appendix 10.2.
61 SFG, An appropriate regulatory estimate of gamma, May 2014, [158]–[163], appendix 10.2.
4.4.3 OTHER MARKET VALUE EVIDENCE

Other market value evidence is relevant, but not yet well-developed

As noted in the AER’s rate of return guideline, some other forms of market value evidence are also available. These include:

- futures pricing studies—the most recent of which (conducted by SFG) indicates a value for theta of 0.12, and
- other simultaneous trade studies—of which there are none covering the post-2000 period.

JGN considers that these alternative methods are not yet as well developed as the dividend drop-off study method. The data and methodology used in these studies has not been subject to nearly the same level of scrutiny and refinement as the data and methodology used in recent dividend drop-off studies (particularly the SFG studies). Further, many of these studies do not cover the post-2000 period.

Accordingly, while these studies may provide some indication as to the reasonableness of estimates from dividend-drop-off studies, JGN considers that at this stage they cannot be given any significant weight in determining a value for theta.

As noted by the AER, these studies indicate a range of values for theta, between 0 and 0.5. Thus, the range produced by these studies broadly supports the theta value indicated by the SFG dividend drop-off studies.

4.4.4 CONCLUSION ON THETA

JGN proposes a value for theta of 0.35.

The reasons why JGN is proposing a different value for theta to that in the rate of return guideline include:

- AER conceptual framework is wrong because it does not focus on market value—JGN does not agree with the conceptual framework adopted by the AER for estimating theta, and in particular the focus on utilisation evidence, rather than market value evidence.

- Conventional framework promotes the NGO by focusing on value to equity-holders—theta must be estimated as the value of distributed imputation credits to equity-holders. This is the conventional and orthodox approach to estimating theta. It is also the approach that best gives effect to the NGO, as it provides for recognition of the value to equity-holders of imputation credits and provides for overall returns which promote efficient investment.

- Market value studies provide the only relevant evidence on point estimate of theta—JGN considers that the only source of evidence capable of providing a point estimate for the value of distributed imputation credits to investors is market value studies. Evidence of utilisation rates (or potential utilisation rates, as indicated by the equity ownership approach) can only indicate the upper bound for investors’ valuation of imputation credits. The conceptual goalposts approach provides no relevant information on the actual value of credits.

- Best market value estimate is 0.35—the best estimate of investors’ valuation of imputation credits from market value studies is 0.35.