

Demand Forecast Update Jemena Gas Networks (NSW) Ltd Access Arrangement - 2020 to 2025

January 2020

Table of Contents

1.	Glossary
2.	Introduction4
3.	Summary and Revised Forecasts
4.	Tariff V9
Attachm	nent 1 - Revised Model
Attachm	nent 2 Statistical Analysis – HIA One Year Lag Relationship with JGN Connections

1. Glossary

AER	Australian Energy Regulator
CORE	Core Energy & Resources Pty Ltd
GJ	Gigajoule
НІА	Housing Industry Association
JGN	Jemena Gas Networks (NSW)
NGL	National Gas Law
NGO	National Gas Objective
NGR	National Gas Rules
NSW	New South Wales
Original CORE Submission	The submission in May 2019 based on data to end 2018 (report and model)
Revised CORE submission	This report and related model, updated for 2018-19 data.

2. Introduction

This document has been prepared in response to the AER's Draft Decision (Attachment 12), in relation to the demand forecasts incorporated in the JGN (NSW) 2020-2025 Access Arrangement.

CORE has been engaged by JGN to review the AER's draft decision, to provide an independent response to each issue raised, based on information provided by JGN and sourced from third parties and prepare a revised forecast.

The structure of this document is as follows:

- 2. Summary and Revised Forecasts
- 3. Tariff V
 - 3.1 JGN Data Update
 - 3.2 HIA Data Update
 - 3.3 Billing Data Clarification
 - 3.4 HIA One Year Lag
 - 3.5 Suspended Connections (formerly Zero Consuming Meters)
 - 3.6 Volume Boundary Meter Strategy

Attachment 1: Updated Model

Attachment 2: HIA Lag - Statistical Analysis

3. Summary and Revised Forecasts

3.1. Methodology

CORE notes the following statement included in 12.1 of the Draft Decision:

"We are satisfied that the overall demand forecasting methodology applied by JGN's consultant, CORE Energy & Resources (CORE), is consistent with rule 74(2) of the National Gas Rules (NGR)".

CORE confirms that is has adopted the same methodology in developing the revised forecasts which are included with this submission as it used in its Original Submission. More specifically the changes CORE has made to the model are:

- updated weather normalisation model based on new 2019-year weather data
- updated the demand forecasting model for:
- > latest connections and demand data sourced from JGN
- > latest HIA data

3.2. Tariff V

CORE has noted the following comments by the AER in its Draft Decision:

12.1.1 Additional information sought

"We would like JGN in its revised proposal to:

- incorporate updated demand and customer forecast based on 2018–19 actual data, and the latest HIA data
- provide clarifications on the basis in which the billing data is derived including the source data and associated workings in a separate worksheet
- provide further clarifications on the accuracy of using a one-year lag between HIA data and JGN connection, including the likely error margins to the penetration rates
- describe the concept of zero consuming meters, its application to the demand and customer forecast, how it differs from disconnections, its relationship with other areas in JGN's proposal, and the reasons it complies with the National Gas Objective (NGO)
- confirm the impact to the demand and customer forecast with and without JGN's volume boundary meter strategy in which individual hot water meters remain on offer for buildings with centralised hot water systems.

We recommend that JGN seek independent assurance on any updates to the demand and customer forecast as well as validating that the key inputs used in the demand and customer forecast are fit for purpose".

CORE confirms that each of the above issues has been addressed and provides independent assurance regarding updates to demand and customer forecast, as well as validating that the key inputs in the demand and customer forecast are fit for purpose.

Each of the matters set out above are addressed individually below.

3.3. Revised Demand Forecast

The following is a summary of the revised forecasts for Tariff V – Residential and Commercial - connections and demand.

The most significant movements between the Revised Submission forecasts and those which formed part of the Original Submission are set out below. CORE notes that the major factor contributing to increased demand for both residential and small business customers is a forecast increase in consumption per connection.

Residential

- Increase in total annual demand by 2025 from 27.55 PJs to 27.87 PJs
- Negligible movement in new connections
- Increase in demand per connection by 2025 from 18.3 to 18.5 GJ per customer
- Changes to address the timing of suspended connection in 2019 vs 2018 and changes to reflect change in new connection customer mix as summarised in the tables below.

Small Business

- Increase in total annual demand by 2025 from 13.29 PJs to 13.59 PJs
- Minor movement in new connections from 39,630 to 39,689
- Increase in demand per connection by 2025 from 335.3 to 342.4 GJ per customer

The following figures and tables provide a summary of forecast aggregate demand, connections and demand per connection for both residential and small business customers.

Figure 3.3 Small Business Connections

Figure 3.2 Residential Consumption per Connection (GJ

Figure 3.4 Small Business Consumption per Connection (GJ)

3.4. Revised Submission Forecasts

3.4.1. Residential

Figure 3.5 Residential Demand

Residential	2020	2021	2022	2023	2024	2025
Existing 2018 Connections	26,822,203	26,520,419	26,212,467	25,873,436	25,541,345	25,203,377
New Dwelling Connections Residential Estate	116,542	450,020	768,563	1,062,769	1,349,942	1,635,449
New Dwelling Connections Residential E2G	20,647	82,634	149,150	213,180	274,956	334,417
New Dwelling Connections Residential HRVB	22,450	90,292	162,977	233,581	303,543	374,741
New Dwelling Connections Residential MD	12,166	47,536	82,833	116,539	149,681	182,972
New Dwelling Connections Residential HRVI	16,958	58,390	83,497	104,576	125,471	146,172
Total Demand	27,010,966	27,249,292	27,459,486	27,604,083	27,744,939	27,877,128

Figure 3.6 Residential Connections

Residential	2020	2021	2022	2023	2024	2025
Opening Connections	1,398,848	1,405,425	1,426,103	1,445,411	1,464,509	1,483,589
Disconnections	2,959	3,030	3,084	3,136	3,188	3,240
Disconnections Zero Consuming Connections	27,023	5,162	5,255	5,343	5,431	5,520
Existing 2018 Connections	1,368,867	1,360,675	1,352,336	1,343,856	1,335,237	1,326,477
Net Dwelling Connections Estate	21,154	16,879	15,705	15,632	15,620	16,369
Net Dwelling Connections E2G	3,704	3,697	3,692	3,686	3,681	3,676
Net Dwelling Connections HRVB	160	154	151	150	153	160
Net Dwelling Connections MD	3,787	3,272	3,216	3,192	3,241	3,377
Net Dwelling Connections HRVI	4,795	1,837	1,799	1,782	1,816	1,750
Total New Dwelling Connections	36,559	28,869	27,647	27,578	27,699	28,573
Cumulative New Connections Residential Estate	23,817	43,423	61,904	80,358	98,847	118,132
Cumulative New Connections Residential E2G	4,000	8,000	12,000	16,000	20,000	24,000
Cumulative New Connections Residential HRVB	160	314	466	615	768	928
Cumulative New Connections Residential MD	3,787	7,058	10,275	13,467	16,708	20,085
Cumulative New Connections Residential HRVI	4,795	6,632	8,431	10,213	12,029	13,779
Total Connections	1,405,425	1,426,103	1,445,411	1,464,509	1,483,589	1,503,402
% Growth	0.47%	1.47%	1.35%	1.32%	1.30%	1.34%
Net Connections	6,577	20,678	19,307	19,098	19,080	19,813
Total Disconnections (Includes ZCM's)	29,981	8,191	8,339	8,480	8,619	8,760

Figure 3.7 Residential Consumption per Connection

Residential	2020	2021	2022	2023	2024	2025
Existing 2018	19.6	19.5	19.4	19.3	19.1	19.0
New Dwelling Connections Residential Estate	4.9	10.4	12.4	13.2	13.7	13.8
New Dwelling Connections Residential E2G	5.2	10.3	12.4	13.3	13.7	13.9
New Dwelling Connections Residential HRVB	140.2	287.1	350.1	379.7	395.4	403.8
New Dwelling Connections Residential MD	3.2	6.7	8.1	8.7	9.0	9.1
New Dwelling Connections Residential HRVI	3.5	8.8	9.9	10.2	10.4	10.6
Weighted Average Demand per Connection	19.2	19.1	19.0	18.8	18.7	18.5
% Growth	1.97%	-0.58%	-0.57%	-0.78%	-0.78%	-0.85%

Figure 3.8 Small Business Demand

Small Business	2020	2021	2022	2023	2024	2025
Existing 2018	13,379,748	13,177,837	13,005,214	12,804,611	12,566,545	12,338,121
New Small Business	56,868	254,273	500,373	749,547	999,393	1,252,190
Total Demand	13,436,616	13,432,111	13,505,587	13,554,159	13,565,938	13,590,312
% Growth	-4.08%	-0.03%	0.55%	0.36%	0.09%	0.18%

Figure 3.9 Small Business Connections

Small Business	2020	2021	2022	2023	2024	2025
Opening Connections	36,596	37,104	37,629	38,151	38,668	39,180
Disconnections	320	302	306	311	315	319
Disconnections Zero Consuming Connections						
Existing 2018 Connections	36,276	35,974	35,668	35,357	35,042	34,723
New Small Business Connections	828	828	828	828	828	828
Cumulative New Commercial Connections	828	1,655	2,483	3,310	4,138	4,966
Total Connections	37,104	37,629	38,151	38,668	39,180	39,689
% Growth	1.39%	1.42%	1.39%	1.36%	1.33%	1.30%
Net Connections	508	526	521	517	513	509
% Growth	-11.55%	3.52%	-0.81%	-0.81%	-0.81%	-0.81%

Figure 3.10 Small Business Consumption per Connection

Small Business	2020	2021	2022	2023	2024	2025
Existing 2018	368.8	366.3	364.6	362.2	358.6	355.3
New Small Business	68.7	153.6	201.5	226.4	241.5	252.2
Weighted Average Demand per Connection	362.1	357.0	354.0	350.5	346.2	342.4
% Growth	-5.40%	-1.43%	-0.83%	-0.98%	-1.22%	-1.10%

4.1. Data Update

4.1.1. Connection and Demand Data Update

CORE confirms that JGN has provided updated data for the 2019 year, for Tariff V - residential and commercial customers, including both connection and demand data, in order to develop this Revised Submission. Further CORE confirms that the data is consistent in nature with that used to develop forecasts for the Original CORE submission and has been applied in a consistent manner by CORE to derive the Revised Submission.

This update resulted in an increase in residential and small business demand as referred to above.

CORE refers to the Revised Model which is included as Attachment 1.

4.1.2. HIA Data Update

CORE confirms that it has accessed and applied latest available HIA data to derive Revised Forecasts of Tariff V, Residential connections, including allocation between dwelling types (due to variable levels of gas consumption of each dwelling type). Further CORE confirms that it has applied this data in a manner consistent with the approach used to derive forecasts in the Original Submission.

CORE refers to the Revised Model which is included as Attachment 1

4.2. Billing Data and Penetration Rate Explanation

4.2.1. Overview of Approach

- CORE's penetration rate (the proportion of new NSW dwellings which will connect to the JGN network) is based on two sets
 of data: actual connection data (for new homes, medium density, and individually metered high-rise connections) and
 estimates of the number of dwellings connected via JGN's volume boundary metering product.
- CORE takes the data and formats it to meet the requirements of CORE's analytical models.
- The final data by customer category is compared against the latest HIA data (by dwelling category) to arrive at the best estimate of Penetration rates for each customer type, across the JGN network
- CORE reiterates that there is a difference between the dwelling connection rate and the connection penetration rate due to the impact of VB connection type which serve multiple dwellings from one connection. The variance between the values, following the 2019 data update, is summarised below:

Figure 4.1 Residential Dwelling Connection Rate vs Connection Penetration Rate

4.2.1.1 High Rise Dwellings

JGN requested that Core provide assurance over the estimates of the number of dwellings and sites connected for each high-rise sub-segment. CORE was not asked to review annual connections as this data has been reported to the AER and audited by KMPG as part of JGN's RIN responses.

The high-rise subsegments are as follows:

- Volume boundary sites with a single volume boundary meter.
- Instantaneous hot water sites with individual gas meters for each dwelling.
- Centralised hot water sites with individual metering for each dwelling (hot water meters or hot water and gas meters).
- Hybrid (volume boundary and centralised hot water) sites which have both a volume boundary meter and individual hot water meters.

JGN's approach to estimating the number of dwellings and sites is to:

- Use billing data where there was a 1-1 relationship between the number of connections and dwellings or sites. For instance:
- > Each high-rise VI connection is for a single dwelling.
- > Each VB connection is for a single site.
- Supplement this data set JGN compiled data from connections applications to identify:
- > How many dwellings where supplied by each VB connection. JGN calculated this number by adding up the number of dwellings listed in each VB connection application.
- > How many sites were configured with individual gas or hot water and gas metering. JGN calculated this number by adding up the number of connection applications for these VI connections on the assumption that there is a single connection application for each site.
- Use billing information to identify:
- > Whether a VI connection was an instantaneous hot water site or a centralised hot water site. This was done by allocating connections based on whether there was a hot water read or not.
- > Whether a VB connection is a volume boundary or hybrid site based on connection application data. Where a VB connection was requested together with a VI connection which has a hot water read this VB connection was allocated to hybrid.

Table 4.1 Estimation methodology for the high-rise sub-segment

	Dwelling numbers	Number of sites
Volume boundary	Number of dwellings listed in each VB connection application	Number of VB connections where there was no associated VI connection with a hot water read
Instantaneous hot water	Number of high-rise VI connections without a hot water read	Number of connection applications for the associated VI connections
Centralised hot water	Number of high-rise VI connections with a hot water read	Number of connection applications for the associated VI connections
Hybrid (volume boundary and centralised hot water)	Number of high-rise VI connections	Number of VB connections where there was associated VI connection with a hot water read

4.2.2. CORE Conclusion

CORE has undertaken an interview with JGN team members responsible for the relevant data and undertaken a 'walk through' the process and has received relevant data to illustrate the process at a highly granular level.

CORE confirms that it has reviewed the approach to developing the assumed penetration rate, based on billing data and notes that dwelling numbers and connection numbers are consistent and has assessed the approach to be reasonable and consistent with rule 74(2) of the NGR.

The final penetration rates relied upon to develop the Revised Forecasts are included within the Revised Model in Attachment 1.

4.3. Reliance on One Year Lag on HIA Data for Residential Connection Forecasts

4.3.1. Introduction

CORE has considered all reasonable approaches in developing a forecast of dwelling completions, connections and thus penetration rates.

CORE has consistently adopted a one-year lag of HIA data (commencements) to derive an estimate of housing completions (the potential timing of connection) on the following basis:

- The HIA is one of few reputable data providers available in the Australian market. CORE has used other data from a specialist provider in the past and found results less accurate;
- 12 months is a prudent estimate of the time from commencement to completion of an 'average' dwelling (see below);
- This approach has been used and accepted in prior regulatory submissions;

- Reference to ABS data on average dwelling completion times in NSW¹:
 - o 7 quarters for new flats, units and apartments
 - 3 quarters for townhouses
 - o 2-3 quarters for houses
- There is a statistically significant relationship between JGN connection data and HIA data with a one-year lag see Attachment 2; and
- CORE is not aware of a suitable alternative which is consistent with rule 74(2) of the NGR.

4.3.2. Use of One Year Lag

Building starts are published by the Housing Industry Association (HIA) on a quarterly basis. Each release details the number of residential dwellings commenced during any given quarter, further detailing the housing type each dwelling commencement falls under. Core has established a lag period of 1 year between the listing of a dwelling commencement and the date at which a dwelling is first billed. This lag period has been determined based on the amount of time taken for a contractor to register a connection request, the installation of the inlet service by a sub-contractor followed by the request and subsequent installation of a gas meter.

Core has determined that the construction time of a new build is the most limiting factor when considering the time at which a gas meter may be installed.

Core recognises that each new dwelling commencement will vary in how long it takes to connect. With multistorey houses and apartment blocks taking considerably longer than a single-story build. Core has therefore investigated the complete range of timeframes quoted for new dwellings to be complete, occupiers moved in and consumption to be first billed. Without considering the pre-construction and planning stages of a new build, approximately 8 months of construction is estimated for single story houses in Australia^{2 3 4} whilst estimates closer to 17months have been quoted for multistorey projects⁵. Research has suggested this 8-month low estimate has been rising in Australia from around 7 months during 2016⁶. Furthermore, the Australian government whilst not giving an estimated timeline quotes that, 'very few new builds fit within their timeliness' because of increasing council legislation, contractor and weather-related delays⁷.

Considering the HIA data is annual, and the significant length of time taken for a housing start to reach a stage of development ready for a occupier to move in Core considers the aforementioned 1 year time lag to be the best estimate of the average time it takes to be installed following commencement and is considered a prudent assumption.

<u>1https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/8752.0Feature%20Article3Jun%202019?opendocument&tabname=Summary&prodno=8752.0&issue=Jun%202019&num=&view=</u>

² https://www.homeloanexperts.com.au/home-loan-articles/stages-of-construction/

³ https://www.newhomesguide.com.au/articles/2016/12/20/average-build-time-for-a-house

⁴ https://www.novushomes.com.au/blog/how-long-does-it-take-build-new-home-perth

⁵ https://www.realestate.com.au/advice/long-take-build-house/

⁶ https://www.ruralcoproperty.com.au/2016/04/15/a-typical-timeline-for-how-long-it-takes-to-build-a-new-home/

⁷ https://www.yourhome.gov.au/you-begin/construction-process

4.3.3. Conclusion

CORE considers the use of HIA data and a one-year lag to be a prudent basis for deriving estimates of future residential connections and the estimates included with the Revised Model to be reasonable and consistent with Rule 74(2) of the NGR.

4.4. Suspended Connections (formerly Zero Consuming Meters)

The general description – suspended connections, relates to customers who have been suspended and therefore had their service suspended (physical suspension via a wad being inserted to prevent gas flow to the connection).

4.4.1. JGN Approach

During 2019, JGN and retailers agreed that network charges would cease 20 business days after suspension of a MIRN. This change was implemented in October 2019 and applies to MIRNS which had previously been suspended, and to MIRNS disconnected after that date. When a MIRN is reconnected, network charges resume from the date of reconnection. In preparing the demand forecast for JGN's Draft Proposal the label "zero-consuming MIRNS" or "ZCM" was used to refer to these MIRNs as gas cannot be consumed at the premises because the meter is locked or wadded. This label has been revised to suspended connections to avoid confusion.

In the context of the demand forecast, the following terminology is used:

1. "Suspended Disconnections" are MIRNS which have been suspended (typically through wadding or locking of the meter). Typically, the MIRN is disconnected at the request of the retailer due to non-payment, customer move-out or failure of the customer to set up a retail agreement.

2. "Disconnected MIRNS" are MIRNS which have been permanently disconnected (otherwise referred to as "abolished"). With these MIRNS, the service to the property is permanently removed (e.g. by isolation of the main in the street) and the MIRN is removed from the market.

The proposed 2020-2025 RSA submitted by JGN in June 2019 specifies that the MIRN would be removed from the Customer List and charges will cease 20 Business Days after suspension. Following consultation with retailers, JGN has agreed that the charges for the MIRN will cease from the date of suspension – this change will be reflected in the updated RSA which will be lodged as part of the response to the Draft Decision.

JGN considers that treatment of suspended connections not incurring network charge in this manner is consistent with the NGO because it improves the accuracy of the forecast on which reference tariffs are based.

4.4.2. Modelling approach

It should be noted that the estimation was undertaken by CORE based on information provided by JGN, relating to historical billing records, including analysis of MIRNS which were suspended (temporarily disconnected)..

The removal of MIRNS from network charges is different from the historical situation that applied prior to October 2019, where network charges continued to apply to sites which had been suspended.

CORE notes that the adjustment to 21,982 customers in 2019 related to customers that had already been suspended but the billing of fixed charges stopped in October. Therefore, adjustments were required for connections only and not total consumption.

Core has assessed the historical suspended connection data and identified that approximately 0.36% or 5,000+ customers (who previously used gas) become suspended each year and cease consuming gas. When this occurs in the future JGN will lose the load from the customer and stop billing fixed charges.

By way of illustration, CORE has identified 7,216 connections would have been suspended (for at least 20 days) at a point in time during 2018 financial year and 10,667 during the 2017 financial year. Further analysis indicates that approximately 0.36% of opening connections are expected to be suspended on average during a year.

4.4.3. Conclusion

CORE has undertaken a review of data provided by JGN, calculated the estimates to be included with the Revised Model and determines them to be reasonable and consistent with Rule 74(2) of the NGR.

4.5. Volume Boundary Meter Strategy

4.5.1. Background

The high-rise market can be dissected into the following segments:

- Volume boundary sites with a single volume boundary meter.
- Instantaneous hot water sites with individual gas meters for each dwelling.
- Centralised hot water sites with individual metering for each dwelling (hot water meters or hot water and gas meters).
- Hybrid (volume boundary and centralised hot water) sites which have both a volume boundary meter and individual hot water meters.

The proportion of high-rise sub-segments can be forecast by analysing the trends observed over the last three years (since JGN's volume boundary metering product was introduced) and by taking into account the factors influencing developer decision making.

Over the last three years there has been a steady rise in the number of dwellings taking up the volume boundary product. The proportion of high-rise dwellings utilising volume boundary has risen by 14% in 2017 to 51% in 2019. There has also been a reduction in the proportion of dwellings being supplied with individual hot water meters (centralised hot water and hybrid sites combined) – from 59% to 41% over the same time period.

The number of high-rise sites with instantaneous hot water systems has also fallen from 26% in 2017 to 9% in 2019. It is thought this may be due to embedders increasingly marketing their product to smaller sites as well as changes to the Australian Standards around the ventilation requirements of gas hot water heaters on balconies.

The gradual increase in the take-up of the volume boundary product is consistent with high-rise construction timelines where projects can take anywhere from 2-5 years to construct⁸. Although the volume boundary product was available from 2016 many

⁸ https://rba.gov.au/publications/bulletin/2017/jun/pdf/bu-0617-1-houses-and-apartments-in-australia.pdf

of the developments completed in 2017 and 2018 had already made their design decisions by 2016 and could not take advantage of the volume boundary product.

JGN expects the proportion of dwellings supplied via volume boundary metering to continue to increase as developers communicate and demonstrate that they are motivated by associated reduction in construction costs and space savings, relative to individual hot water metering.

Based on the observed historical trends and the latest market developments Core forecasts that:

- the proportion of Instantaneous hot water dwellings will continue to fall (following a demonstrated historical trend), from 9% to 5% by 2021, after which time the percentage is expected to remain relatively constant;
- the proportion of centralised hot water dwellings will fall to 5% as only a minority of developers will opt to install individual hot water metering;
- the number of hybrid sites will fall to 1%, reflecting the historic ratio of hybrid to centralised hot water sites; and
- the residual number of sites (89% by 2022) will be supplied by volume boundary metering.

4.6. Independent assurance on updates as well as validating key inputs are fit for purpose

CORE has completed an independent assessment of the JGN data used to develop updates of the forecasts of both Tariff V (Residential and Commercial) connection and demand and other input data (including third party).

CORE has undertaken a review of the adjustment to the model by the AER referred to in its Draft Decision and observed that the change in demand is as expected. In this regard CORE notes a number of interrelations between elements of the model.

CORE confirms that the JGN data used is reasonable and the other input data is fit for purpose.

Attachment 1 - Revised Model

Attachment 2 | Statistical Analysis – HIA One Year Lag Relationship with JGN Connections

name: <unnamed>
 log: S:\Cameron Kirkpatrick\HIA lag\HIA_lags.smcl
 log type: smcl
 opened on: 10 Dec 2019, 09:32:20

- 1 . insheet using "S:\Cameron Kirkpatrick\HIA lag\HIA_lags.csv"
 (12 vars, 11 obs)
- 2 . tabulate year

year	Freq.	Percent	Cum.
2009	1	9.09	9.09
2010	1	9.09	18.18
2011	1	9.09	27.27
2012	1	9.09	36.36
2013	1	9.09	45.45
2014	1	9.09	54.55
2015	1	9.09	63.64
2016	1	9.09	72.73
2017	1	9.09	81.82
2018	1	9.09	90.91
2019	1	9.09	100.00
Total	11	100.00	

3 . gen time = $_n$

- 4 . tsset year time variable: year, 2009 to 2019 delta: 1 unit
- 5.

6 . *all categories of HIA forecast regressed against JGN recorded connections 7 . reg jgn a

Source	SS	df		MS		Number of obs $E(1)$	=	11 50 46
Model Residual	1.4726e+09 262666895	1 1.47 9 2918		.4726e+09 9185210.6		F(1, 9) Prob > F R-squared	=	0.0001
Total	1.7353e+09	10	173	525941		Adj R-squared Root MSE	=	5402.3
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
a _cons	1.924004 -2842.548	.2708 6268.	607 832	7.10 -0.45	0.000 0.661	1.311274 -17023.63	2 1	.536733 1338.53

8 . estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
·	11	-119.4292	-109.0451	2	222.0902	222.886

Note: N=Obs used in calculating BIC; see [R] BIC note

9 . reg jgn b

Source	SS	df		MS		Number of obs $\mathbf{F}(1)$	=	11
Model Residual	457820739 1.2774e+09	1 9	457 141	820739 937630		Prob > F R-squared	=	0.1061
Total	1.7353e+09	10	173	525941		Root MSE	=	11914
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
b _cons	10.56486 13300.52	5.88 15379	8254 .34	1.80 0.86	0.106 0.410	-2.742368 -21489.96	2 4	3.87209 8091.01

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	11	-119.4292	-117.7446	2	239.4892	240.2849

Note: N=Obs used in calculating BIC; see [R] BIC note

11. reg jgn c

Source	SS	df		MS		Number of obs $E(1)$	= 11
Model Residual	1.6583e+09 76933899.2	1 9	1.65 8548	83e+09 211.02		Prob > F R-squared	= 0.0000 = 0.9557 = 0.9507
Total	1.7353e+09	10	173	525941		Root MSE	= 2923.7
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
c _cons	7.776538 9797.053	.5583 2351	275 .27	13.93 4.17	0.000 0.002	6.513513 4478.111	9.039562 15115.99

12. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	11	-119.4292	-102.2914	2	208.5828	209.3786

Note: N=Obs used in calculating BIC; see [R] BIC note

13. reg jgn d

Source	SS	df		MS		Number of obs $E(1)$	=	11
Model Residual	381490843 1.3538e+09	1 9	381 150	490843 418730		F(1, 9) Prob > F R-squared	=	0.1457
Total	1.7353e+09	10	173	525941		Root MSE	=	12265
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
d _cons	-7.262075 50153.94	4.56 7285	005 .37	-1.59 6.88	0.146 0.000	-17.57762 33673.29	3 6	.053475 6634.59

Akaike's information criterion and Bayesian information criterion

	Model	Obs 1	l(null)	ll(model)	df	AIC	BIC
	•	11 -1	19.4292	-118.0638	2	240.1275	240.9233
		Note: N=Ob	s used	in calculating	g BIC; s	see [R] BIC not	9
15.	reg jgn e						
	Source	SS	df	MS		Number of obs $\mathbf{E}(1, 0)$	= 11
	Model Residual	305460712 1.4298e+09	1 9	305460712 158866522		F(I, 9) Prob > F R-squared	= 1.92 = 0.1989 = 0.1760 = 0.0845
	Total	1.7353e+09	10	173525941		Root MSE	= 0.0845 = 12604
	jgn	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]
	e _cons	19.74597 19434.86	14.24 15420	023 1.39 .11 1.26	0.199 0.239	-12.46767 -15447.84	51.95961 54317.57

16. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
·	11	-119.4292	-118.3643	2	240.7286	241.5244

Note: N=Obs used in calculating BIC; see [R] BIC note

17. reg jgn f

Source	SS	df		MS		Number of obs	=	11
 Model Residual	1.2373e+09 497921736	1 9	1.23 5532	73e+09 4637.4		F(1, 9) Prob > F R-squared	= = =	0.0011 0.7131
Total	1.7353e+09	10	173	525941		Root MSE	=	7438.1
 jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
 f _cons	1.08289 20821.98	.2289 4663	9809 .224	4.73 4.47	0.001 0.002	.5648987 10273.03	3	1.60088 1370.92

18. estat ic

Akaike's information criterion and Bayesian information criterion

•	11	-119.4292	-112.5626	2	229.1253	229.9211
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

19. reg jgn g

Sourc	ce	SS	df		MS		Number of obs $E(1)$	=	11
Mode Residua	el al	1.4684e+09 266820727	1 9	1.46 2964	84e+09 6747.4	F(1, 9) Prob > F R-squared Adi R-squared		=	0.0001
Tota	al	1.7353e+09	10	173	525941		Root MSE	=	5444.9
je	yn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
cor	g 1s	1.923994 -2907.05	.2733 6335	3785 .384	7.04 -0.46	0.000 0.657	1.305569 -17238.68	2 1	.542419 1424.59

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	11	-119.4292	-109.1314	2	222.2628	223.0586

Note: N=Obs used in calculating BIC; see [R] BIC note

21. reg jgn h

Source	SS	df		MS		Number of obs $E(1)$	=	11
Model Residual	1.2376e+09 497631674	1 9	1.23 5529	76e+09 2408.3		Prob > F R-squared	=	0.0011
Total	1.7353e+09	10	173	525941		Root MSE	=	7435.9
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
h _cons	.9056124 15141.06	.1914 5743.	168 309	4.73 2.64	0.001 0.027	.4725975 2148.787	1 2	.338627 8133.32

22. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	11	-119.4292	-112.5594	2	229.1189	229.9147

Note: N=Obs used in calculating BIC; see [R] BIC note

23. reg jgn total

Source	SS	df		MS	Number of of $F(1, 2)$		= 11 = 29.98
Residual	400698283	9	4452	46e+09 2031.5		Prop > F R-squared Adi R-squared	= 0.0004 = 0.7691 - 0.7434
Total	1.7353e+09	10	173	525941		Root MSE	= 6672.5
jgn	Coef.	Std.	Err.	t	₽> t	[95% Conf.	Interval]
total _cons	.6266005 8823.294	.1144 6066	4482 .456	5.47 1.45	0.000 0.180	.3677007 -4899.983	.8855003 22546.57

Akaike's information criterion and Bayesian information criterion

	Model	Obs 11	l(null)	ll(mod	el) df	AIC	BIC
	•	11 -1:	19.4292	2 -111.3	679 2	226.7357	227.5315
		Note: N=Ob	s used	in calcul	ating BIC;	see [R] BIC not	:e
25. 26. 27.	*all except *note AIC in	bde providing ndicators sign	g a sig nificar	nficant r htly highe	elationshi r than in	p later model stru	lctures
29.	reg jgn a						
	Source	SS	df	MS		Number of obs	= 11
	Model Residual	1.4726e+09 262666895	1 9	1.4726e+ 29185210	09.6	F(1, 9) Prob > F R-squared	= 0.0001 = 0.8486
	Total	1.7353e+09	10	1735259	41	Adj R-squared Root MSE	= 5402.3
	jgn	Coef.	Std.	Err.	t P> t	[95% Conf.	Interval]
	a _cons	1.924004 -2842.548	.2708 6268.	3607 7 .832 -0	.10 0.00 .45 0.66	0 1.311274 1 -17023.63	2.536733 11338.53

30. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of jgn

> chi2(1) = 0.94 Prob > chi2 = 0.3329

31. estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

> chi2(2) = 0.80 Prob > chi2 = 0.6711

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	0.80 4.52 0.29	2 1 1	0.6711 0.0336 0.5921
Total	5.60	4	0.2310

32. dwstat

Durbin-Watson d-statistic(2, 11) = 1.357518

33. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

1	0.020	1	0.8878
lags(p)	chi2	df	Prob > chi2

H0: no serial correlation

34. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	0.091	2	0.9557

H0: no serial correlation

35. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 1.39Prob > F = 0.3329

36. estat vif

Variable	VIF	1/VIF
a	1.00	1.000000
Mean VIF	1.00	

37. estat ic

Akaike's information criterion and Bayesian information criterion

·	11	-119.4292	-109.0451	2	222.0902	222.886
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

38.

39. reg jgn c

Source	SS	df		MS		Number of obs $E(1)$	= 11
Model Residual	1.6583e+09 76933899.2	1 9	1.65 8548	83e+09 211.02		F(1, 9) = Prob > F = R-squared =	= 0.0000 = 0.9557
Total	1.7353e+09	10	173	525941		Root MSE	= 0.9307 = 2923.7
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
c _cons	7.776538 9797.053	.5583 2351	275	13.93 4.17	0.000 0.002	6.513513 4478.111	9.039562 15115.99

40. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of jgn
chi2(1) = 0.40
Prob > chi2 = 0.5267

41. estat imtest, white

Prob > chi2 = 0.4642

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	1.53 0.38 1.74	2 1 1	0.4642 0.5402 0.1876
Total	3.65	4	0.4560

42. dwstat

Durbin-Watson d-statistic(2, 11) = 2.427626

43. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	1.121	1	0.2897

H0: no serial correlation

44. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	1.123	2	0.5702

H0: no serial correlation

45. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 0.61Prob > F = 0.6342 46. estat vif

Variable	VIF	1/VIF
C	1.00	1.000000
Mean VIF	1.00	

47. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	11	-119.4292	-102.2914	2	208.5828	209.3786

Note: N=Obs used in calculating BIC; see [R] BIC note

48.

49.	reg	jgn	f

Source	SS	df		MS		Number of obs $E(1)$	=	11
Model Residual	1.2373e+09 497921736	1 9	1.23 5532	73e+09 4637.4		F(1, 9) Prob > F R-squared	=	0.0011
Total	1.7353e+09	10	173	525941		Root MSE	=	7438.1
 jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
f _cons	1.08289 20821.98	.2289 4663	9809 .224	4.73 4.47	0.001 0.002	.5648987 10273.03	3	1.60088 1370.92

50. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of jgn

> chi2(1) = 1.74 Prob > chi2 = 0.1869

51. estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	2.03 2.51 2.68	2 1 1	0.3618 0.1133 0.1015
Total	7.22	4	0.1245

52. dwstat

Durbin-Watson d-statistic(2, 11) = .6638264

53. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	7.003	1	0.0081

H0: no serial correlation

54. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	7.123	2	0.0284

H0: no serial correlation

55. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 0.43Prob > F = 0.7390

56. estat vif

Variable	VIF	1/VIF
f	1.00	1.000000
Mean VIF	1.00	

57. estat ic

Akaike's information criterion and Bayesian information criterion

	11	-119.4292	-112.5626	2	229.1253	229.9211
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

58.

59. reg jgn g

Source	SS	df		MS		Number of obs $E(1)$	= 11
Model Residual	1.4684e+09 266820727	1 9	1.46 2964	84e+09 6747.4		F(1, 9) Prob > F R-squared	= 49.53 = 0.0001 = 0.8462
Total	1.7353e+09	10	173	525941		Root MSE	= 0.8292 = 5444.9
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
g _cons	1.923994 -2907.05	.2733 6335	3785 .384	7.04 -0.46	0.000 0.657	1.305569 -17238.68	2.542419 11424.59

60. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of jgn
chi2(1) = 0.92
Prob > chi2 = 0.3381

61. estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

chi2(2) = 0.80 Prob > chi2 = 0.6694

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	p
Heteroskedasticity Skewness Kurtosis	0.80 4.44 0.20	2 1 1	0.6694 0.0351 0.6512
Total	5.45	4	0.2446

62. dwstat

Durbin-Watson d-statistic(2, 11) = 1.381133

63. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.008	1	0.9275

H0: no serial correlation

64. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	0.113	2	0.9449

H0: no serial correlation

65. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 1.52Prob > F = 0.3018

66. estat vif

Variable	VIF	1/VIF
g	1.00	1.000000
Mean VIF	1.00	

67. estat ic

Akaike's information criterion and Bayesian information criterion

•	11	-119.4292	-109.1314	2	222.2628	223.0586
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

68.

69. reg jgn h

	Source	SS	df		MS		Number of obs F(1, 9) Prob > F R-squared		11
R	Model esidual	1.2376e+09 497631674	1 9	1.23 5529	76e+09 2408.3				0.0011 0.7132
	Total	1.7353e+09	10	173	525941		Adj R-squared Root MSE	=	7435.9
	jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	h _cons	.9056124 15141.06	.1914 5743.	168 309	4.73 2.64	0.001 0.027	.4725975 2148.787	1 2	.338627 8133.32

70. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of jgn

> chi2(1) = 1.43 Prob > chi2 = 0.2319

71. estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	1.79 2.44 2.70	2 1 1	0.4091 0.1180 0.1003
Total	6.93	4	0.1395

72. dwstat

Durbin-Watson d-statistic(2, 11) = .8948624

73. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	2.202	1	0.1378

H0: no serial correlation

74. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	2.206	2	0.3318

H0: no serial correlation

75. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 0.67Prob > F = 0.6014

76. estat vif

1/VI	VIF	Variable
1.00000	1.00	h
	1.00	Mean VIF

77. estat ic

Akaike's information criterion and Bayesian information criterion

•	11	-119.4292	-112.5594	2	229.1189	229.9147
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

78.

79. reg jgn total

Source	SS	df		MS		Number of obs		Number of obs = $E(1, 0) =$		11 20 08
Model Residual	1.3346e+09 400698283	1 9	1.334 44522	46e+09 2031.5		Prob > F R-squared	=	0.0004		
Total	1.7353e+09	10	173	525941		Adj R-squared Root MSE		6672.5		
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]		
total _cons	.6266005 8823.294	.1144	4482 .456	5.47 1.45	0.000 0.180	.3677007 -4899.983	2	8855003 2546.57		

80. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of jgn
chi2(1) = 1.57
Prob > chi2 = 0.2097

81. estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

> chi2(2) = 1.43 Prob > chi2 = 0.4885

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	1.43 2.97 2.61	2 1 1	0.4885 0.0849 0.1064
Total	7.01	4	0.1355

82. dwstat

Durbin-Watson d-statistic(2, 11) = 1.007931

83. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	1.138	1	0.2860

H0: no serial correlation

84. estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	1.171	2	0.5568

H0: no serial correlation

85. estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 6) = 0.59Prob > F = 0.6443 86. estat vif

Variable	VIF	1/VIF
total	1.00	1.000000
Mean VIF	1.00	

87. estat ic

Akaike's information criterion and Bayesian information criterion

•	11	-119.4292	-111.3679	2	226.7357	227.5315
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

88.
89. *no autocoreelation or heterskedasticity detected causing false possitive relationsh
> ips in those HIA categories providing signifcant predictions of JGN dwellings
90.

91. reg jgn Ll.a

Source	SS	df		MS		Number of obs $E(1)$	=	10
Model Residual	1.5113e+09 51619469	1 8	1.51 6452	13e+09 433.63	Prob > F R-squared		=	0.0000
Total	1.5630e+09	9	173	662406		Root MSE	=	2540.2
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
a Ll.	2.078286	.1357	956	15.30	0.000	1.765141	2	.391431
_cons	-3667.671	3052.	884	-1.20	0.264	-10707.64	3	372.293

92. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-91.47351	2	186.947	187.5522

Note: N=Obs used in calculating BIC; see [R] BIC note

93. reg jgn L1.b

Source	SS	df		MS		Number of obs $E(1)$	=	10
Model Residual	695765079 867196574	1 8	695 108	765079 399572		F(1, 0) Prob > F R-squared	=	0.0351
Total	1.5630e+09	9	173	662406		Root MSE	=	10412
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
b Ll.	13.03288	5.14	426	2.53	0.035	1.170196	2	4.89556
cons	8370.548	1344	9.9	0.62	0.551	-22644.97	3	9386.07

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df		AIC	BIC
	10	-108.5257	-105.5803	2	215	.1607	215.7659
	Note:	N=Obs used in	calculating	BIC;	see [R]	BIC 1	note

95. reg jgn Ll.c

Number of obs = $\frac{1}{100}$	Nu	MS		df	SS	Source
F(1, 8) = 1/6. Prob > F = 0.001 R-squared = 0.950 Idi R-squared = 0.950	Pi R-	953e+09 7885.93	1.4 845	1 8	1.4953e+09 67663087.5	Model Residual
Root MSE = 2908	Ro	3662406	17	9	1.5630e+09	Total
[95% Conf. Interval	P> t	t	Err.	Std.	Coef.	jgn
7.242849 10.282	0.000	13.30	0181	.659	8.762547	c Ll.
3636.78 15472.	0.006	3.72	.185	2566	9554.412	_cons

96. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-92.82672	2	189.6534	190.2586

Note: N=Obs used in calculating BIC; see [R] BIC note

97. reg jgn L1.d

Source	SS	df		MS		Number of obs	= 10
Model Residual	102034323 1.4609e+09	1 8	102 182	034323 615916		F(1, 0) Prob > F R-squared	= 0.36 = 0.4762 = 0.0653 = 0.0516
Total	1.5630e+09	9	173	662406		Root MSE	= 13514
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
d L1.	-3.863883	5.169	9161	-0.75	0.476	-15.78399	8.056225
_cons	46960.53	8568.	703	5.48	0.001	27201.06	66719.99

98. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-108.1881	2	220.3763	220.9815

Note: N=Obs used in calculating BIC; see [R] BIC note

99. reg jgn L1.e

Source	SS	df	MS			Number of obs $E(1)$	=	10
Model Residual	879747393 683214259	1 8	8797473 85401782	393 2.4		Prob > F R-squared	=	0.0124
Total	1.5630e+09	9	1736624	±06		Root MSE	=	9241.3
jgn	Coef.	Std. H	Err.	t	P> t	[95% Conf.	In	terval]
e Ll.	34.58198	10.774	468 3	3.21	0.012	9.735526	5	9.42843
_cons	4395.808	11896.	.65 (0.37	0.721	-23037.93	3	1829.54

100 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	10	-108.5257	-104.3881	2	212.7761	213.3813

Note: N=Obs used in calculating BIC; see [R] BIC note

101 reg jgn Ll.f

Source	SS	df		MS		Number of obs = 1 F(1, 8) = 79.5 Prob > F = 0.000 R-squared = 0.908 Adj R-squared = 0.897 Root MSE = 4225 .		10
Model Residual	1.4201e+09 142829485	1 8	1.42 1785	01e+09 3685.6				0.0000 0.9086
Total	1.5630e+09	9	173	662406				4225.4
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
f L1.	1.175877	.1318	443	8.92	0.000	.8718434	1	.479911
cons	21007.32	2649.	166	7.93	0.000	14898.33	2	7116.31

102 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-96.56227	2	197.1245	197.7297

Note: N=Obs used in calculating BIC; see [R] BIC note

103 reg jgn Ll.g

Source	SS	df	MS	Number of obs = $\mathbb{E}(1 + 2)$	10
Model Residual	1.5125e+09 50466139.5	1 8	1.5125e+09 6308267.44	Prob > F = R-squared =	0.0000
Total	1.5630e+09	9	173662406	Adj R-squared = Root MSE =	0.9637 2511.6

jgn	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
g L1.	2.081689	.1344386	15.48	0.000	1.771673	2.391705
_cons	-3814.964	3026.693	-1.26	0.243	-10794.53	3164.603

Akaike's information criterion and Bayesian information criterion

•	10	-108.5257	-91.36053	2	186.7211	187.3262
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

105 reg jgn L1.h

Source	SS	df		MS		Number of obs	=	10
Model Residual	1.4601e+09 102895128	1 8	1.46 1286	01e+09 1890.9		F(1, 8) Prob > F R-squared	= 1 = 0 = 0	.0000
Total	1.5630e+09	9	173	662406		Root MSE	= 3	586.3
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Inte	rval]
h L1.	.9990346	.0937	663	10.65	0.000	.7828092	1.	21526
_cons	14459.14	2772.	031	5.22	0.001	8066.827	208	51.46

106 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-94.92256	2	193.8451	194.4503

Note: N=Obs used in calculating BIC; see [R] BIC note

107 reg jgn L1.total

Source Model Residual Total	SS 1.4908e+09 72165738.6 1.5630e+09	df 1 8 9	1.49 9020 173	MS 08e+09 717.32 662406		Number of obs F(1, 8) Prob > F R-squared Adj R-squared Root MSE		10 165.26 0.0000 0.9538 0.9481 3003.5
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	[terval]
total L1.	.6813358 8227.573	.0529	9996 302	12.86	0.000	.5591185	•	8035531

108 estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of jgn
chi2(1) = 4.74
Prob > chi2 = 0.0295

109 estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

chi2(2) = 3.65 Prob > chi2 = 0.1611

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	p
Heteroskedasticity Skewness Kurtosis	3.65 6.06 2.65	2 1 1	0.1611 0.0138 0.1036
Total	12.36	4	0.0149

110 dwstat

Durbin-Watson d-statistic(2, 10) = 1.685001

111 estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	1.401	1	0.2366

H0: no serial correlation

112 estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	2.471	2	0.2906

H0: no serial correlation

113 estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 5) = 0.18Prob > F = 0.9089 114 estat vif

1/VIF	VIF	Variable
1.000000	1.00	total L1.
	1.00	Mean VIF

115 estat ic

Akaike's information criterion and Bayesian information criterion

	10	-108.5257	-93.14884	2	190.2977	190.9028
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

118 *AIC is lower than in all unlagged regressions

120 reg jgn a Ll.a

119

Sourc	e	SS	df		MS		Number of obs	=	102 51
Mode Residua	el il	1.5114e+09 51603723.5	2 7	755 737	678965 1960.5		F(2, 7) Prob > F R-squared	= = =	0.0000
Tota	1	1.5630e+09	9	173	8662406		Root MSE	=	2715.1
je	ŋn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
 L1 con	a • • • •	0206535 2.096582 -3584.61	.4468 .4210 3725	8967 5519 .377	-0.05 4.97 -0.96	0.964 0.002 0.368	-1.077396 1.099534 -12393.73	1	.036089 3.09363 5224.507

121 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	10	-108.5257	-91.47198	3	188.944	189.8517

Note: N=Obs used in calculating BIC; see [R] BIC note

122 reg jgn b L1.b

Source	SS	df	MS	Number of obs = $F(2, 7) = F(3, 7)$	10
Model Residual	924625611 638336042	2 7	462312805 91190863.1	Prob > F = 0.0 R-squared = 0.5)435 5916
Total	1.5630e+09	9	173662406	Adj R-squared = 0.4 Root MSE = 95 4	1749 19.4

t	Std. Err.	Coef.	jgn
1.58 2.62	5.380862 4.733972	8.524357 12.42297	b L1.
-0.69	18065.51	-12537.35	_cons

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
•	10	-108.5257	-104.0483	3	214.0967	215.0044

Note: N=Obs used in calculating BIC; see [R] BIC note

124 reg jgn c Ll.c

Source	SS	df		MS		Number of obs $\mathbf{E}(2)$	=	10
Model Residual	1.5259e+09 37074966.2	2 7	762 5296	2943343 5423.75		Prob > F R-squared	=	0.0000
Total	1.5630e+09	9	173	3662406		Root MSE	=	2301.4
 jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
с L1.	3.749656 4.763389	1.56 1.74	0294 3917	2.40 2.73	0.047 0.029	.0601474 .6396804	7 8	.439165 .887099
_cons	8824.7	2053	.288	4.30	0.004	3969.445	1	3679.95

125 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
·	10	-108.5257	-89.81872	3	185.6374	186.5452

Note: N=Obs used in calculating BIC; see [R] BIC note

126 reg jgn d L1.d

Source	SS	df		MS		Number of obs $E(2, 7)$	=	10
Model Residual	809119140 753842513	2 7	404 107	559570 691788		Prob > F R-squared	=	0.0779
Total	1.5630e+09	9	173	662406		Root MSE	=	10377
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
d L1. _cons	-10.49065 -5.89042 65057.48	4.094 4.04 9652	1097 7576 .881	-2.56 -1.46 6.74	0.037 0.189 0.000	-20.17166 -15.46142 42232.04	 3 8	8096536 .680577 7882.91

Akaike's information criterion and Bayesian information criterion

	Model	Obs	11	(null)	ll(model)	df	AIC	1	BIC
	•	10	-10	8.5257	-104.8799	3	215.7599	21	6.6676
		Note:	N=0bs	used	in calculating	BIC;	see [R] BIC	note	
128	reg jgn e Ll	L.e							
	Source	S	SS	df	MS		Number of	obs =	10
_	Model Residual	92246 64049	51923 9730	2 7	461230962 91499961.4		F(2, Prob > F R-squared	/) = = =	5.04 0.0441 0.5902
_	Total	1.5630)e+09	9	173662406		AAJ R-SQUA Root MSE	irea = =	9565.6

Total	1.5630e+09	9 173	662406		Root MSE	= 9565.6
jgn	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
e L1.	8.340249 30.72207	12.2068 12.50195	0.68 2.46	0.516 0.044	-20.52424 1.159642	37.20473 60.28449
_cons	-139.2802	13989.06	-0.01	0.992	-33218.14	32939.58

129 estat ic

Akaike's information criterion and Bayesian information criterion

	10	-108.5257	-104.0653	3	214.1305	215.0383
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

130 reg jgn f Ll.f

Source	SS	df		MS		Number of obs	=	10
Model Residual	1.4357e+09 127218684	2 7	717 1817	871485 4097.7		F(2,7) Prob > F R-squared	=	0.0002
Total	1.5630e+09	9	173	662406		Root MSE	=	4263.1
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
f L1.	3268195 1.448472	.352 .322	632 807	-0.93 4.49	0.385 0.003	-1.160662 .6851548	2	5070228 .211789
_cons	22547.8	3147.	502	7.16	0.000	15105.14	2	9990.46

Akaike's information criterion and Bayesian information criterion

	10	-108.5257	-95.98355	3	197.9671	198.8749
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

132 reg jgn g Ll.g

Source	SS	df		MS		Number of obs $E(2, 7)$	=	10
Model Residual	1.5125e+09 50454983	2 7	756 7207	253335 854.71		F(2, 7) Prob > F R-squared	=	0.0000
Total	1.5630e+09	9	173	662406		Root MSE	=	2684.7
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
g L1.	0171794 2.096862	.4366 .4115	634 575	-0.04 5.09	0.970 0.001	-1.049724 1.123683	1 3	.015365 .070041
_cons	-3744.812	3694.	156	-1.01	0.344	-12480.1	4	990.478

133 estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	10	-108.5257	-91.35942	3	188.7188	189.6266

Note: N=Obs used in calculating BIC; see [R] BIC note

134 reg jgn h L1.h

Source	SS	df		MS		Number of obs $E(2)$	=	10
Model Residual	1.4707e+09 92225419.9	2 7	735 13	368116 3175060		Prob > F R-squared	=	0.0000
Total	1.5630e+09	9	173	8662406		Root MSE	=	3629.7
jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
h L1.	214174 1.172176	.2379	9944 5307	-0.90 5.46	0.398	7769413 .6648919	1	3485933 .679461
_cons	16070.29	3328.	148	4.83	0.002	8200.47	2	3940.11

Akaike's information criterion and Bayesian information criterion

_	Model	Obs	11(null) 1	l(model)	df	AIC	BIC
_	•	10	-108	3.5257	7 -	94.37519	3	194.7504	195.6581
_		Note: 1	N=0bs	used	in ca	alculating	BIC;	see [R] BIC not	e
136	reg jgn tota	al L1.tota	al						
	Source	SS	S	df		MS		Number of obs	= 10
_	Model Residual	1.4991e 6381420	e+09 03.9	2 7	74) 911	9573725 6314.84		F(2,7) Prob > F R-squared	= 82.22 = 0.0000 = 0.9592
_	Total	1.56306	e+09	9	17	3662406		Root MSE	= 3019.3
_	jgn	Coe	ef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
_	total L1.	14281	118 558	.1492	2075 5764	-0.96 5.90	0.370	4956314 .4798248	.2100078 1.121887
	_cons	9918	.89	3281.	284	3.02	0.019	2159.886	17677.89

137 estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of jgn

> chi2(1) = 1.76 Prob > chi2 = 0.1842

138 estat imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

> chi2(5) = 9.39 Prob > chi2 = 0.0944

Cameron & Trivedi's decomposition of IM-test

	T		
Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	9.39 8.93 0.09	5 2 1	0.0944 0.0115 0.7643
Total	18.42	8	0.0183

139 dwstat

Durbin-Watson d-statistic(3, 10) = 2.083126

140 estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	1.899	1	0.1682

H0: no serial correlation

141 estat bgodfrey, lags(2)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	3.526	2	0.1715

H0: no serial correlation

142 estat ovtest

Ramsey RESET test using powers of the fitted values of jgn Ho: model has no omitted variables F(3, 4) = 0.21

1 (5 /	± /	
Prob >	F =	0.8836

143 estat vif

1/VIF	VIF	Variable
0.154012 0.154012	6.49 6.49	total L1.
	6.49	Mean VIF

144 estat ic

Akaike's information criterion and Bayesian information criterion

·	10	-108.5257	-92.53389	3	191.0678	191.9755
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

145

146 *All 1 year lags provide signficant forecasts

147 *Unlagged HIA categories fail to provide significant relationships when combined wit > h lags, P Value exceeds acceptable threshold

148 *Unlagged categeroies should therefore be dropped from the model.

149

150 *final two candidates for models providing the highest comparitive power 151 reg jgn L1.a $\,$

Source	SS	df	MS	Number of obs = $\mathbb{E}(1 + 2) = 2$	10
Model Residual	1.5113e+09 51619469	1 8	1.5113e+09 6452433.63	Prob > F = 0 R-squared = 0	.0000
Total	1.5630e+09	9	173662406	Adj R-squared = 0 Root MSE = 2	.9628 540.2

jgn	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
a L1.	2.078286	.1357956	15.30	0.000	1.765141	2.391431
_cons	-3667.671	3052.884	-1.20	0.264	-10707.64	3372.293

Akaike's information criterion and Bayesian information criterion

Model		11(null)	11(model)		AIC	BIC
•	10	-108.525/	-91.4/351	2	186.94/	18/.5522

Note: N=Obs used in calculating BIC; see [R] BIC note

153

154 reg jgn Ll.total

Source	SS	df		MS		Number of obs	=	10
 Model Residual	1.4908e+09 72165738.6	1 8	1.49 9020	08e+09 717.32		F(1, 8) Prob > F R-squared	=	0.0000
Total	1.5630e+09	9	173	662406		Root MSE	=	3003.5
 jgn	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
total L1.	.6813358	.0529	9996	12.86	0.000	.5591185	•	8035531
_cons	8227.573	2750	.302	2.99	0.017	1885.366	1	4569.78

155 estat ic

Akaike's information criterion and Bayesian information criterion

	10	-108.5257	-93.14884	2	190.2977	190.9028
Model	Obs	ll(null)	ll(model)	df	AIC	BIC

Note: N=Obs used in calculating BIC; see [R] BIC note

156

157 log close

name:	<unnamed></unnamed>	
log:	S:\Cameron Kirkpatrick	<pre>k\HIA lag\HIA_lags.smcl</pre>

log type:	smcl	
closed on:	10 Dec 2019,	09:32:21