

SPI PowerNet Pty Ltd

Transmission Revenue Reset (TRR) 2014/15 – 2016/17

Fitting Probability Distributions for SP AusNet Reliability Data for STPIS Submission - Parsons Brinkerhoff

11 October 2013

SP AusNet

Fitting probability distributions for SP AusNet reliability data for STPIS Submission

15 February 2013

Document information

Client: SP AusNet Title: Fitting probability distributions for SP AusNet reliability data for STPIS Submission Document No: 2193220A- Rev2 Date: 15 February 2013

Rev	Date	Details
0	07/02/2013	Draft
1	14/02/2013	Final
2	15/02/2013	Final, corrections to introduction section 1

Author, Review	ver and Approver details		
Prepared by:	J Zhang, P Walshe	Date: 06/02/2013	
Reviewed by:	S Pottachira	Date: 08/02/2013	
Approved by:	P Walshe	Date: 15/02/2013	Peler & USAL

Distribution

SP AusNet

©Parsons Brinckerhoff Australia Pty Limited 2013

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

Level 15 28 Freshwater Place Southbank VIC 3006 Tel: +61 3 9861 1111 Fax: +61 3 9861 1144 Email: melbourne@pb.com.au www.pbworld.com

Certified to ISO 9001, ISO 14001, AS/NZS 4801 A GRI Rating: Sustainability Report 2011

Contents

Page number

1.	Intro	duction	1
	1.1	Approach	1
2.	Resu	Its of distribution fitting	2
	2.1	Average outage duration	2
	2.2	Loss of supply event frequency	4
	2.3	Average circuit outage rate	7
3.	Sum	mary of findings	20

1. Introduction

Parsons Brinckerhoff has been engaged by SP AusNet to assist with the determination of suitable targets and other attributes for the parameters of its service target performance incentive scheme (STIPS).

The service component of SP AusNet's STIPS will measure performance against the following parameters:

- Average outage duration (1 sub-parameter)
- Loss of supply event frequency (2 sub-parameters)
- Average circuit outage rates (6 sub-parameters).

Parsons Brinckerhoff determined a curve of best fit to SP AusNet's reliability data from the past five years 2008-2012 for each of the sub-parameters and calculated the standard deviation on which proposed caps and collars for this scheme are based.

1.1 Approach

Parsons Brinckerhoff used the @RISK product, a risk analysis and simulation add-in tool for Microsoft Excel, to determine the types of probability distribution that best fit the reliability data.

Recognising the need to present the best fit distribution curve based on the nature of the reliability data, the following distribution parameters were chosen for this exercise.

- Average outage duration data are fitted using continuous probability distributions bounded at a lower limit of zero
- Loss of supply event frequency are fitted with discrete probability distributions
- Availability rates are fitted with continuous probability distributions bounded at a lower limit of zero.

Three key fit statistics were used to measure how well the probability distribution functions fit the input data. For discrete probability distributions, the Chi Squared (ChiSq) fit statistic was used. For non-discrete distributions, the Kolmogorov-Smirnov (K-S) and the Anderson-Darling (A-D) fit statistics were used.

The K-S fit statistic focuses on the differences between the middle of the fitted distribution and the input data. The A-D fit statistic focuses on the difference between the tails of fitted distribution and input data. Where the input data was concentrated around the middle of a distribution curve the K-S fit statistic was used and where the data was near the tails the A-D fit statistic was used. The results from both were compared in each case. Where the input data was both in the middle and the tails of a distribution, the result from the A-D fit statistic was favoured, because the best fit of the data and the distribution curve at the tails improves the calculation of the scheme measures (caps and collars at one or two standard deviations).

Once the probability distribution function of best fit was determined for each sub-parameter the standard deviation of the probability distribution functions were calculated.

Because a probability distribution is being fitted to a dataset of five values only for each sub-parameter, the fit statistics are typically low in value and the curve of best fit is sensitive to small changes in any of the five values. The curve of second best fit was examined to test for any large variations in the calculated standard deviation that might indicate that the curve of best fit should not be used.

2. Results of distribution fitting

2.1 Average outage duration

The average outage duration is a measure of the response time to outages. The optimal performance limit is close to zero, which represents an immediate response; as such a lower limit of zero is set for fitting curves to the data.

The best fit using the A-D fit statistic is the Exponential distribution curve (figure 1), where the duration data is spread across the middle and tails of the distribution. Table 1 shows the statistical results using other distributions to fit the duration data using the A-D fit statistic, where it can be seen the Erlang distribution curve exhibits the second best fit.

Table 1 Average outage duration – statistics table for A-D

Fit Ranking	-		Input	Expon	Erlang	Pareto2	Gamma	Weibull
Fit	A-D	- Distribution Statist	ics					
Expon	0.4745	Minimum	4.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Erlang	0.4745	Maximum	230.0000	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity
Pareto2	0.4745	Mean	97.9556	97.9556	97.9556	97.9556	97.9556	97.3162
Gamma	0.4785	Mode	88.7500 [e	0.0000	0.0000	0.0000	3.1732	12.8495
	0.4699	Median	91,7780	67.8976	67.8976	67,8976	68,7736	72,7936
	0.6068	Std. Deviation	82,2058	97,9556	97,9556	97,9556	96.3559	87,6454
Lognorm	0.6640	Skewners	1 0905	2 0000	2 0000	2 0000	1 9673	1 7059
Lognorm2	0.6640	Kurtonin	E 4676	0.0000	0.0000	0.0000	9 9055	7 2022
Uniform	1.1859	Kurtosis	3.4073	9.0000	5.0000	9.0000	0.0000	7.2023
Rayleigh	1.2669	- Percentiles	4 0000	5.0245	5 0045	5 0245	5.4470	7.0004
InvGauss	1.3007	5%	4.0000	5.0245	5.0245	5.0245	5.4470	7.0024
ChiSq		10%	4.0000	10.3207	10.3207	10.3207	10.9567	13.3774
BetaGeneral		15%	4.0000	15.9196	15.9196	15.9196	16.6993	19.7531
Pareto	IN/A	20%	4.0000	21.8582	21.8582	21.8582	22.7372	26.2690
Pearson6	N/A	25%	71.5000	28.1801	28.1801	28.1801	29.1247	33.0109
	1971	30%	71.5000	34.9383	34.9383	34.9383	35.9202	40.0508
		35%	71.5000	42.1976	42.1976	42.1976	43.1910	47.4610
		40%	71.5000	50.0382	50.0382	50.0382	51.0182	55.3216
		45%	91.7780	58.5615	58.5615	58.5615	59.5028	63.7269
		50%	91.7780	67.8976	67.8976	67.8976	68.7736	72.7936
		55%	91.7780	78.2183	78.2183	78.2183	78.9992	82.6715
		60%	92.5000	89.7558	89.7558	89.7558	90.4073	93.5599
		65%	92,5000	102.8360	102.8360	102.8360	103.3166	105.7352
		70%	92,5000	117.9359	117.9359	117.9359	118,1933	119,5986
		75%	92,5000	135,7953	135,7953	135,7953	135,7595	135,7674
		80%	92,5000	157,6535	157.6535	157,6535	157.2240	155,2687
		85%	230.0000	185.8335	185,8335	185,8335	184,8521	180.0151
		90%	230,0000	225 5511	225 5511	225 5511	223 7269	214 2668
		50 %	230.0000	223.3311	223.3311	223.3311	223.7209	214.2000
		95%	230.0000	293.4468	293.4488	293.4408	290.0582	2/1.4/39

The best fit using the K-S fit statistic is the Triangle distribution curve (figure 2). Table 2 illustrates other distribution curves fitting the outage duration data using the K-S statistics, the LogLogistic distribution curve exhibits the second best fit for the outage duration data.

Table 2 Average outage duration – statistics table for K-S

Fit Ranking	-		Input	Triang	LogLogistic	Weibull	Gamma	Expon
Fit	K-S	- Distribution Statist	ics					
Triang	0.2711	Minimum	4.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LogLogistic	0.2931	Maximum	230.0000	290.5189	+Infinity	+Infinity	+Infinity	+Infinity
Weibull	0.2931	Mean	97.9556	98.1730	219.4410	97.3162	97.9556	97.9556
Gamma	0.3138	Mode	88.7500 fe	4,0000	19,1694	12.8495	3.1732	0.0000
Expon	0.3181	Median	91,7780	86.5101	72.9474	72,7936	68,7736	67,8976
Pareto?	0.3181	Std. Deviation	82 2058	68.0095	+Infinity	87 6454	96.3559	97 9556
Ravleigh	0.3653	Skawpers	1 0905	0.5652	+Infinity	1 7050	1 9672	2 0000
Lognorm	0.3695	Kewness	1.0905 E.4075	0.0000	+1minty	7,0000	1.9075	2.0000
Lognorm2	0.3695	Kurtosis	5.4075	2.4000	+immity	7.2025	0.0000	9.0000
BetaGeneral	0.3963	- Percentiles						
Uniform	0.4783	5%	4.0000	9.3122	8.6013	7.0024	5.4470	5.0245
InvGauss	0.5097	10%	4.0000	16.8124	14.7971	13.3774	10.9567	10.3207
ChiSq	0.7064	15%	4.0000	24.5240	20.7039	19.7531	16.6993	15.9196
Pareto	N/A	20%	4.0000	32.4660	26.6613	26.2690	22.7372	21.8582
Pearsons	N/A	25%	71.5000	40.6602	32.8544	33.0109	29.1247	28.1801
Pedisono		30%	71.5000	49.1325	39.4311	40.0508	35.9202	34.9383
		35%	71.5000	57.9131	46.5386	47.4610	43.1910	42.1976
		40%	71.5000	67.0385	54.3448	55.3216	51.0182	50.0382
		45%	91.7780	76.5527	63.0571	63.7269	59.5028	58.5615
		50%	91.7780	86.5101	72.9474	72.7936	68.7736	67.8976
		55%	91.7780	96.9792	84.3890	82.6715	78.9992	78.2183
		60%	92.5000	108.0479	97.9179	93.5599	90.4073	89.7558
		65%	92,5000	119,8329	114.3422	105,7352	103,3166	102,8360
		70%	92,5000	132,4944	134,9527	119,5986	118,1933	117,9359
		75%	92,5000	146.2629	161,9670	135.7674	135.7595	135,7953
		80%	92,5000	161 4925	199 5900	155 2687	157 2240	157 6535
		95%	220.0000	179 7797	257.0304	190.0151	194 9521	195 9225
		0376	230.0000	1/0.//8/	257.0204	100.0151	107.0521	103.8335
		90%	230.0000	199.2834	323'9135	214.2668	223.7269	225.5511
		95%	230.0000	226.0057	618.6654	271.4739	290.0582	293.4488
		•						

As the data concentrates about both the middle and tails of the distribution, the A-D fit has been selected and the curve of best fit determined as Exponential. The curve of second best fit is the Erlang curve. The standard deviations of the two curves are the same (97.96).

In comparison, the standard deviation of the best K-S fit curve (Triangle) is significantly less at 68.01. The upper limit of the Triangle curve, however, is bounded at 290.5, which is counter intuitive to the possible performance outcomes. Hence the adoption of this curve to represent the data is inappropriate.

2.2 Loss of supply event frequency

Losses of supply events represent discrete occurrences of failure. In order to best fit the loss of supply events data, discrete distribution curves are used with equal interval binning.

Number of events > 0.05 system minutes

Figure 3 shows the NegBin discrete distribution curve is the best fit for the loss of supply events greater than 0.05 systems. Table 3 is provided to show the variation in statistics for other discrete distribution curves.

Noting that the Chi Squared fit statistics are similar for the top three curves of best fit, and that the standard deviations vary widely, the curve of second best fit (Geometric) and the curve of third best fit (Poisson) were also examined. The standard deviations are 2.45, 2.00 and 1.41 respectively. The relatively high variation in standard deviations indicates some uncertainty in the curve fitting.

The average of the three values (2.45, 2.00, 1.41) is 1.95, close to the standard deviation for the curve of best fit. This indicates that the standard deviation of 2.000 for the curve of best fit (NegBin) is an appropriate value to use in setting caps and collars.

Figure 3 No. of events > 0.05 system minutes - best discrete distribution fit - NegBin

Table 3 No. of events > 0.05 system minutes – discrete distributions statistics table

Fit Rankin	na 💌		Input	NegBin	Geomet	Poisson	HyperGeo	IntUnifo
Fit	Chi-Sa	Function		RiskNegBi	=RiskGeom	=RiskPoisso	=RiskHyper	=RiskInt
NegBin	0.0755	- Distribution Statistic	S 0.000	0.0000	0.0000	0.0000	0.0000	0.0000
Geomet	0.1339	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Poisson	0.1564	Maximum	6.0000	+Infinity	+Infinity	+Infinity	63.0000	6.0000
HyperGeo	0.1947	Mean	2.0000	2.0000	2.0000	2.0000	1.9801	3.0000
IntUniform	1.0667	Mode	1.0000	0.0000	0.0000	1.0000	2.0000	0.0000
Binomial	N/A	Median	1.0000	1.0000	1.0000	2.0000	2.0000	3.0000
	1.267	Std. Deviation	2.3452	2.0000	2.4495	1.4142	1.3836	2.0000
		Skewness	1.7444	1.5000	2.0412	0.7071	0.6748	0.0000
		Kurtosis	6.3223	6.2500	9.1667	3.5000	3.4219	1.7500
		- Percentiles						
		5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		15%	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000
		20%	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000
		25%	1.0000	0.0000	0.0000	1.0000	1.0000	1.0000
		30%	1.0000	1.0000	0.0000	1.0000	1.0000	2.0000
		35%	1.0000	1.0000	1.0000	1.0000	1.0000	2.0000
		40%	1.0000	1.0000	1.0000	1.0000	1.0000	2.0000
		45%	1.0000	1.0000	1.0000	2.0000	2.0000	3.0000
		50%	1.0000	1.0000	1.0000	2.0000	2.0000	3.0000
		55%	1.0000	2.0000	1.0000	2.0000	2.0000	3.0000
		60%	1.0000	2.0000	2.0000	2.0000	2.0000	4.0000
		65%	2.0000	2.0000	2.0000	2.0000	2.0000	4.0000
		70%	2.0000	3.0000	2.0000	3.0000	3.0000	4.0000
		75%	2.0000	3.0000	3.0000	3.0000	3.0000	5.0000
		80%	2.0000	3.0000	3.0000	3.0000	3.0000	5.0000
		85%	6.0000	4.0000	4.0000	3.0000	3.0000	5.0000
		90%	6.0000	5.0000	5.0000	4.0000	4.0000	6.0000
		95%	6.0000	6.0000	7.0000	5.0000	4.0000	6.0000
		•						F
o 40 🛋	A 1%	1%				Write 1	Co Coll	Close

Number of events > 0.30 system minutes

The discrete distribution of best fit for the loss of supply events greater than 0.30 system minutes is the IntUniform curve, giving a standard deviation of 0.816. Table 4 is provided to show the statistics for other discrete distribution curves.

The curve of second best fit (Bionomial) has a significantly worse fit statistic -7.2 compared to 1.6 for the curve of best fit - hence it has not been considered.

Figure 4 No. of event > 0.30 system minutes – best discrete distribution fit – IntUniform

Table 4 No. of events > 0	.30 system minutes -	discrete distributions	statistics table
---------------------------	----------------------	------------------------	------------------

Fit Ranki	ing 💌		Input	IntUniform	Binomial	HyperGeo	Poisson	Geome
	-	_ Fit						
FIT	Chi-Sq	Function		=RiskIntUni	=RiskBinomi	=RiskHyper	=RiskPoisso	=RiskGeomet(0.55556
IntUniform	1.6000	- Distribution Statistic	S					
Binomial	7.2024	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
HyperGeo	7.2029	Maximum	2.0000	2.0000	2.0000	2.0000	+Infinity	+Infinit
Poisson	8.2/07	Mean	0.8000	1.0000	0.8000	0.8000	0.8000	0.800
eomet	11.9605	Mode	0.0000	0.0000	1.0000	1.0000	0.0000	0.000
VegBin	N/A	Median	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		Std. Deviation	0.8367	0.8165	0.6928	0.6928	0.8944	1.200
		Skewness	0.5122	0.0000	0.2887	0.2887	1.1180	2.166
		Kurtosis	2.3878	1.5000	2.0833	2.0834	4.2500	9.694
		- Percentiles						
		5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		25%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		30%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		35%	0.0000	1.0000	0.0000	0.0000	0.0000	0.000
		40%	0.0000	1.0000	1.0000	1.0000	0.0000	0.000
		45%	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		50%	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		55%	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		60%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		65%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		70%	1.0000	2.0000	1.0000	1.0000	1.0000	1.000
		75%	1.0000	2.0000	1.0000	1.0000	1.0000	1.000
		80%	1.0000	2.0000	1.0000	1.0000	1.0000	1.000
		85%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
		90%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
		95%	2,0000	2,0000	2,0000	2,0000	2.0000	3,000

2.3 Average circuit outage rate

Average circuit outage rates represent measures of availability for components of transmission circuits. The optimal performance limit is 0%, which represents total availability for the component for the year; as such a lower limit of zero is set for fitting non-continuous curves to the data.

The availability rate measures are presented based on the components and nature of availability in the following categories.

Lines outage rate - fault performance

The K-S fit statistic has the Weibull distribution curve delivering the best fit (figure 5), while using the A-D fit statistic, the LogLogistic curve is best fitting (figure 6). As most of the data congregate near the two tails, the A-D fit statistic is preferred (LogLogistic), giving a standard deviation of 0.090.

Tables 5 and 6 present the variation in statistical fit by other distribution curves for K-S and A-D respectively. The standard deviations for the curve of second best fit (Pearson5) and the Weibull are 0.080 and 0.072, being slightly lower than for the preferred curve.

Figure 5 Lines - fault non-continuous distribution comparison using K-S

Fit Rankin	ng 💌		Input	Weibull	LogLogistic	Triang	Gamma	InvGauss	Lognorm
Fit	K-S	- Fit		D: Lut t	Dillari	Di LT	8:10	D: 17 0	D: H
Weibull	0.2105	Function	=	RISKWEIDU	=RISKLOGLO =	=Riski riang	=RISKGamm	=RISKINVGa =	RISKLOGNO
LogLogistic	0.2182	- Distribution Stat	0.1001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Triang	0.2226	Mirimum	0.1681	U.UUUU	U.UUUU	0.0000	U.UUUU	U.UUUU	U.0000
Gamma	0.2239	Maximum	0.3563	+Initially	+irminity	0.3363	+ininity	+Ininity	+irminty
InvGauss	0.2253	Mean	0.2590	0.2599	0.2022	0.2369	0.2590	0.2590	0.2592
Lognorm	0.2255	Mode	0.1726 [est]	0.20/1	0.2355	0.3563	0.2305	0.2205	0.2294
Lognorm2	0.2255	Median	0.2437	0.261/	0.2468	0.2534	0.2522	0.2487	0.2466
Pearson5	0.2263	Std. Deviation	0.0809	0.0722	0.0902	0.0845	0.0729	0.0750	0.0754
Pearson6	0.2263	Skewness	0.2398	-0.0957	2.0116	-0.5657	0.5629	0.8684	0.8977
Erlang	0.2267	Kurtosis	0.7325	2.7522	17.9225	2.4000	3.4/52	4.2569	4,4063
Ravleigh	0.3233	- Percentues	0.1001	0 1074	0.1475	0.0001	0.1510	0.1561	0.1557
Uniform	0.3752	576	0.1681	0.15/4	0.14/5	0.0801	0.1519	0.1561	0.1557
Expon	0.4774	10%	0.1681	0.1642	0.1000	0.1133	0.1/11	0.1/2/	0.1/2/
Pareto2	0.4774	15%	0.1681	0.1828	0.1829	0,1388	0.1850	0.1851	0.1852
ChiSa	0.5494	20%	0.1681	0.19//	0.1946	0.1603	0.1965	0.1956	0.1957
RetaGeneral	N/A	25%	0.2000	0.2106	0.2048	0.1/92	0.2069	0.2051	0.2053
Pareto	N/4	30%	0.2000	0.2221	0.2141	0.1963	0.2164	0.2140	0.2143
		35%	0.2000	0,2327	0.2229	0.2120	0.2256	0.2227	0.2229
		40%	0.2000	0.2427	0.2316	0.2266	0.2345	0.2313	0.2315
		45%	0.2437	0.2523	0.2401	0.2404	0.2433	0.2399	0.2401
		50%	0.2437	0.2617	0.2488	0.2534	0.2522	0.2487	0.2488
		55%	0.2437	0.2711	0.2579	0.2657	0.2613	0.2578	0.2579
		60%	0.3250	0.2804	0.2674	0.2776	0.2708	0.2674	0.2675
		65%	0.3250	0.2900	0.2777	0.2889	0.2809	0.2777	0.2777
		70%	0.3250	0.3000	0.2892	0.2998	0.2917	0.2890	0.2890
		75%	0.3250	0.3107	0.3024	0.3103	0.3038	0.3017	0.3016
		80%	0.3250	0.3224	0.3183	0.3205	0.3175	0.3164	0.3163
		85%	0.3583	0.3358	0.3386	0.3304	0.3341	0.3345	0.3344
		90%	0.3583	0.3522	0.3675	0.3399	0.3557	0.3586	0.3586
		95%	0.3583	0.3759	0.4197	0.3493	0.3894	0.3973	0.3977
		•							•
(a) (a) [AP	1%					W	rite To Cell	Close

Table 5 Lines – fault non-continuous distribution statistics table for K-S

Figure 6 Lines - fault non-continuous distribution comparison using A-D

Fit Ranki	ng 💌		Input	LogLogistic	Pearson5	Pearson6	InvGauss	Lognorm	Lognorm2
Fit	A-D	_ Fit							
Loal oaistic	0.2468	Function		=RiskLogLo	=RiskPears	=RiskPears	=RiskInvGa	=RiskLogno	=RiskLogno
Pearson5	0.2597	- Distribution Stati	stics						
Pearson6	0.2609	Minimum	0.1681	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
InvGauss	0.2624	Maximum	0.3583	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity
Lognorm	0.2637	Mean	0.2590	0.2622	0.2597	0.2595	0.2590	0.2592	0.2592
Lognorm2	0.2637	Mode	0.1728 [est]	0.2335	0.2214	0.2237	0.2285	0.2294	0.2294
Gamma	0 2702	Median	0.2437	0.2488	0.2455	0.2464	0.2487	0.2488	0.2488
Erlang	0.2815	Std. Deviation	0.0809	0.0902	0.0799	0.0786	0.0750	0.0754	0.0754
Weibull	0.2873	Skewness	0.2398	2.0116	1.3598	1.2273	0.8684	0.8977	0.8977
Ravleigh	0.5578	Kurtosis	0.7325	17.9225	6.7989	6.0387	4.2569	4,4663	4.4663
Uniform	0.6972	- Percentiles							
Expon	1 2235	5%	0.1681	0,1475	0.1588	0.1579	0.1561	0.1557	0.1557
Pareto?	1 2225	10%	0.1681	0.1685	0.1739	0.1736	0.1727	0.1727	0.1727
ChiSa	1 6672	15%	0.1681	0.1829	0.1852	0.1852	0.1851	0.1852	0.1852
Trippe	Linfoity	20%	0.1681	0.1946	0.1949	0.1951	0.1956	0.1957	0.1957
Triang Control	+innnity	25%	0.2000	0.2048	0.2037	0.2042	0.2051	0.2053	0.2053
BetaGeneral	/V/A	30%	0.2000	0.2141	0.2121	0.2128	0.2140	0.2143	0.2143
Pareto	IN/A	35%	0.2000	0.2229	0.2204	0.2211	0.2227	0.2229	0.2229
		40%	0.2000	0.2316	0.2286	0.2294	0.2313	0.2315	0.2315
		45%	0.2437	0,2401	0.2369	0.2378	0.2399	0.2401	0.2401
		50%	0.2437	0.2488	0.2455	0.2464	0.2487	0.2488	0.2488
		55%	0.2437	0.2579	0.2545	0.2554	0.2578	0.2579	0.2579
		60%	0.3250	0.2674	0.2641	0.2650	0.2674	0.2675	0.2675
		65%	0.3250	0.2777	0.2746	0.2754	0.2777	0.2777	0.2777
		70%	0.3250	0.2892	0.2862	0.2869	0.2890	0.2890	0.2890
		75%	0.3250	0.3024	0.2995	0.3000	0.3017	0.3016	0.3016
		80%	0.3250	0.3183	0.3152	0.3155	0.3164	0.3163	0.3163
		85%	0.3583	0.3386	0.3350	0.3348	0.3345	0.3344	0.3344
		90%	0.3583	0.3675	0.3623	0.3612	0.3586	0.3586	0.3586
		95%	0.3583	0.4197	0.4083	0.4053	0.3973	0.3977	0.3977
		•		1					ŀ
		10/10							1

Table 6 Lines – fault non-continuous distribution statistics table for A-D

Lines outage rate - forced outage performance

The data for lines forced to be unavailable is spread across the middle and the tails of the distribution curve. The best fit distribution for the lines forced outage performance for both the K-S and A-D fit statistics is the Pearson5 distribution curve (figure 7 and 8) giving a standard deviation of 0.017.

Tables 7 and 8 illustrate the other distribution fit statistics for the lines forced outage performance. The standard deviation for the curve of second best fit (InvGauss) is the same as for the curve of best fit.

Figure 7 Lines - forced non-continuous distribution comparison using K-S

Fit Rankin	g 🔳		Input	Pearson5	Lognorm	Lognorm2	InvGauss	Erlang	Gamma
Fit	K-S	- Fit		e: le				er le l	
Pearson5	0.2565	Function	-	RiskPears	=RiskLogno	=RiskLogno	=RiskInvGa	=RiskErlang	=RiskGamm
Lognorm	0.2578	- Distribution State	SUCS 0 1250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm2	0.2578	Mirtificiti	0.1250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
InvGauss	0.2579	Maximum	0.1681	+1000	+1000	+100	+1000	+1minity	+innnity
Erlang	0.2585	Medn	0.1409	0.1453	0.1461	0.1461	0.1461	0.1470	0.1409
Gamma	0.2591	Mode	0.1070 [est]	0.1432	0.1470	0.1401	0.1401	0.1470	0.1400
Weibull	0.2794	Std. Deviation	0.1429	0.0169	0.14/9	0.14/9	0.14/9	0.1402	0.1402
Rayleigh	0.5018	Stu. Deviauori	0.0183	0.0100	0.0100	0.0100	0.0100	0.0105	0.0105
Triang	0.5532	Skewness	-0.0952	2 2062	2 2010	2 2010	2 1000	2.0741	2 0727
Expon	0.5682		1,2007	2,3903	5.2019	5.2019	5,1000	5.0741	5.0757
Uniform	0.5950	E9/	0 1250	0 1225	0 1222	0 1222	0 1222	0 1227	0 1229
ChiSq	0.6818	10%	0.1250	0.1233	0.1292	0,1232	0.1232	0.1227	0.1220
BetaGeneral	N/A	15%	0.1250	0.1318	0.1318	0.1205	0.1318	0.1201	0.1318
LogLogistic	N/A	20%	0.1250	0.1346	0.1347	0.1347	0.1347	0.1348	0.1348
Pareto	N/A	25%	0.1417	0 1370	0.1372	0 1372	0 1372	0 1374	0 1374
Pareto2	N/A	30%	0.1417	0.1393	0.1395	0.1395	0.1395	0.1398	0.1398
Pearson6	N/A	35%	0.1417	0.1415	0.1417	0.1417	0.1417	0.1420	0.1420
		40%	0.1417	0.1435	0.1438	0.1438	0.1438	0.1441	0.1441
		45%	0,1429	0,1456	0,1459	0,1459	0,1459	0.1462	0.1462
		50%	0.1429	0.1476	0.1479	0.1479	0.1479	0.1482	0.1482
		55%	0,1429	0.1497	0.1500	0.1500	0.1500	0.1503	0,1503
		60%	0,1667	0,1519	0,1522	0,1522	0,1522	0,1525	0,1525
		65%	0,1667	0.1542	0.1544	0.1544	0.1544	0.1547	0.1547
		70%	0.1667	0,1566	0,1568	0,1568	0,1568	0.1571	0.1570
		75%	0,1667	0,1593	0,1595	0,1595	0,1595	0,1596	0,1596
		80%	0,1667	0,1624	0,1625	0,1625	0,1625	0,1626	0.1625
		85%	0.1681	0.1661	0,1660	0,1660	0.1660	0,1660	0.1660
		90%	0,1681	0.1709	0.1706	0,1706	0,1706	0.1704	0,1703
		95%	0,1681	0,1784	0,1777	0,1777	0,1776	0,1771	0,1770
		4							+
	a fun								1

Table 7 Lines – forced non-continuous distribution statistics table for K-S

Figure 8 Lines - forced non-continuous distribution comparison using A-D

Fit Ranki	ng 💌	1997	Input	Pearson5	InvGauss	Lognorm	Lognorm2	Erlang	Gamma
Fit	A-D	- Hit		Dislorence	Disking Co.	Dield anne	Dield a seco	DiskEdana	DiskGamm
	0.3870	Distribution Stati	atica	=RISKPEdIS	=RISKINVGd	=RISKLOGHO	=RISKLOGHO	=Riskendrig	=RISKGdIIIII
InvGauss	0.3906	Minimum	0 1250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm	0.3907	Maximum	0.1691	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity
Lognorm2	0.3907	Maximum	0.1081	0.1490	0 1/20	0.1490	0 1490	0.1/20	0.1490
Erlang	0.3930	Mode	0.1670 [ect]	0.1452	0.1461	0.1461	0.1461	0.1470	0.1470
Gamma	0.3952	Modian	0.1670 [est]	0.1476	0.1470	0.1470	0.1470	0.1493	0.1492
Weibull	0.4495	Etd. Dovistion	0.1423	0.0169	0.0166	0.0166	0.1475	0.0165	0.1462
Rayleigh	1.4601	Skowpers	0.0183	0.0100	0.0100	0.0100	0.0100	0.0105	0.0103
Expon	1.8462	Kurtosis	1 2607	2 2062	2 1000	2 2010	2 2010	2 0741	2 0727
Uniform	2.0566	- Percentiles	1.2007	3.3903	5,1000	3.2019	3.2019	5.0741	5.0757
ChiSq	2.6080	Fercentules	0 1250	0 1235	0 1232	0 1232	0 1232	0 1227	0 1228
Triang	+Infinity	1096	0.1250	0.1294	0.1292	0.1292	0.1292	0.1227	0.1220
BetaGeneral	N/A	15%	0.1250	0.1204	0.1203	0.1203	0.1203	0.1201	0.1318
LogLogistic	N/A	20%	0.1250	0.1346	0.1347	0 1347	0.1347	0.1348	0.1348
Pareto	N/A	25%	0.1417	0 1370	0 1372	0 1372	0 1372	0 1374	0 1374
Pareto2	N/A	30%	0 1417	0 1393	0 1395	0 1395	0 1395	0 1398	0 1398
Pearson6	N/A	35%	0 1417	0.1415	0 1417	0 1417	0 1417	0 1420	0.1420
		40%	0.1417	0 1435	0.1438	0.1438	0 1438	0 1441	0 1441
		45%	0.1429	0.1456	0.1459	0,1459	0.1459	0.1462	0.1462
		50%	0 1429	0 1476	0 1479	0 1479	0 1479	0 1482	0 1482
		55%	0,1429	0.1497	0,1500	0,1500	0.1500	0,1503	0,1503
		60%	0.1667	0.1519	0.1522	0 1522	0.1522	0.1525	0.1525
		65%	0.1667	0.1542	0.1544	0.1544	0.1544	0.1547	0.1547
		70%	0,1667	0.1566	0,1568	0,1568	0,1568	0,1571	0,1570
		75%	0,1667	0,1593	0,1595	0,1595	0,1595	0,1596	0,1596
		80%	0,1667	0.1624	0,1625	0,1625	0,1625	0,1626	0,1625
		85%	0,1681	0.1661	0,1660	0,1660	0,1660	0,1660	0,1660
		90%	0,1681	0.1709	0.1706	0,1706	0,1706	0,1704	0,1703
		95%	0,1681	0.1784	0,1776	0,1777	0,1777	0,1771	0,1770
		*							+
							1		1

Table 8 Lines – forced non-continuous distribution statistics table for A-D

Reactive plant outage rate - fault performance

Using the K-S fit statistic, the best fit distribution for reactive plant unavailability due to fault is the InvGauss (figure 9), while the A-D fit statistic has the Loglogistic curve as the best fit (figure 10). As the data is spread evenly across the middle and the tails of the distribution curve the A-D fit is preferred (LogLogistic), giving a standard deviation of 0.064.

Tables 9 and 10 are provided to show the variation in fit statistics of other distribution curves. The standard deviation for the curve of second best fit (InvGauss) at 0.058 is not materially different.

Figure 9 Reactive plant – fault non-continuous distribution comparison using K-S

Fit Rankin	g 💌		Input	InvGauss	Lognorm	Lognorm2	Pearson6	Erlang	Gamma
Fit	K-S	- Ht		DiskTeuCa	Dield a see a	Dield anne	Diel/Deene	Diel/Calana	DieleComm
	0.1359	Distribution Stati	=	RISKINVGd	=RISKLOGNO	=RISKLOGHO	=RISKPedis	=RISKENIANY	=RISKGdmm
Lognorm	0.1364	Minimum	0 2460	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm2	0.1364	Maarinum	0.4156	U.0000	Linfoity	Linfpity	Linfoity	Linfoity	Linfoity
Pearson6	0.1373	Moon	0.2247	0 2247	0 2247	0.2247	0.2247	0.2247	0 2247
Erlang	0.1417	Mode	0.3217	0.3217	0.3097	0.3097	0.3090	0.3145	0.3145
Gamma	0.1418	Median	0.2210 [e3t]	0.3196	0.3196	0.3196	0.3103	0.3213	0.3213
LogLogistic	0.1423	Std. Deviation	0.5247	0.0590	0.0190	0.0590	0.0592	0.05213	0.05213
Pearson5	0.1468	Stu: Deviauori	0.0045	0.0360	0.0300	0.0380	0.0303	0.0574	0.0374
Weibull	0.1583	Kurtosis	2,0000	2 4790	2 5760	2 5269	2 6274	2 1975	2 1972
BetaGeneral	0.2246	- Percentiles	2.9009	3.4700	3.3200	3, 3208	3.03/4	3.1075	5.1075
Triang	0.3525	5%	0.2468	0 2389	0 2387	0 2387	0 2391	0 2364	0 2364
Rayleigh	0.4288	10%	0.2468	0.2546	0.2546	0.2546	0.2548	0.2536	0.2537
Uniform	0.4750	15%	0.2468	0.2659	0.2660	0.2660	0.2660	0.2657	0.2658
ChiSq	0.5191	20%	0.2468	0.2752	0 2753	0.2753	0 2753	0 2757	0 2757
Expon	0.5323	25%	0.2857	0.2835	0.2836	0.2836	0.2835	0.2843	0.2844
Pareto2	0.5323	30%	0.2857	0.2912	0.2912	0.2912	0.2911	0.2923	0.2923
Pareto	N/A	35%	0.2857	0.2984	0.2985	0.2985	0.2983	0.2998	0.2998
		40%	0.2857	0.3055	0.3056	0.3056	0.3053	0.3071	0,3071
		45%	0.3247	0.3125	0.3126	0.3126	0.3123	0.3142	0.3142
		50%	0.3247	0.3196	0,3196	0.3196	0.3193	0.3213	0.3213
		55%	0.3247	0.3268	0.3268	0.3268	0.3265	0.3285	0.3285
		60%	0.3506	0.3343	0.3343	0.3343	0.3340	0.3360	0.3360
		65%	0.3506	0.3423	0.3422	0.3422	0.3419	0.3438	0.3438
		70%	0.3506	0.3508	0.3508	0.3508	0.3505	0.3522	0.3521
		75%	0.3506	0.3603	0.3602	0.3602	0.3600	0.3613	0.3613
		80%	0.3506	0.3712	0.3711	0.3711	0.3709	0.3717	0.3717
		85%	0.4156	0.3842	0.3841	0.3841	0.3841	0.3841	0.3841
		90%	0.4156	0.4012	0.4012	0.4012	0.4014	0.4001	0.4000
		95%	0.4156	0.4278	0.4279	0.4279	0.4286	0.4245	0.4244
		4							Þ
al an 1 💼 1	A DP						141-2		1 01

Table 9 Reactive plant – fault non-continuous distribution statistics table for K-S

Figure 10 Reactive plant – fault non-continuous distribution comparison using A-D

Fit Rankir	ng 👤	1202	Input	LogLogistic	InvGauss	Lognorm	Lognorm2	Pearson6	Erlang
Fit	A-D	- Fit		p: li li	D: 11 0	D: U	B : 14	0.10	p: le l
LocLogistic	0.1552	Function		=RISKLOGLO	=RiskinvGa	=RISKLOGNO	=RISKLogno	=RISKPears	=RiskErlang
InvGauss	0.1648	- Distribution State	SUCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm	0.1649	Minimum	0.2468	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm2	0.1649	Maximum	0.4156	+Innnity	+inninty	+Innity	+Ininity	+Innity	+Innity
Pearson6	0.1650	Medn	0.5247	0.3256	0.3247	0.3247	0.3247	0.3247	0.3247
Erlang	0.1656	Mode	0.2510 [est]	0.3126	0.3095	0.3097	0.3097	0.3090	0.3145
Gamma	0.1659	Median	0.324/	0.3197	0.3196	0.3196	0.3196	0.3193	0.3213
Pearson5	0.1668	Std. Deviation	0.0643	0.0643	0.0580	0.0580	0.0580	0.0583	0.0574
Weibull	0.1958	Skewness	0.3/11	1.0065	0.5355	0.5420	0.5420	0.5822	0.3536
BetaGeneral	0.3153	Rurtosis	2.9009	6.8954	3.4/80	3.5268	3.5268	3.63/4	3.18/5
Ravleigh	1.0112	- Percentues	0.2460	0 2220	0.0000	0.0007	0 2207	0.0001	0.0004
Uniform	1,1843	3%	0.2468	0.2536	0.2369	0.2367	0.2387	0.2391	0.2504
Expon	1.5775	10%	0.2400	0.2551	0.2540	0.2540	0.2540	0.2546	0.2550
Pareto2	1.5775	15%	0.2468	0.2659	0.2659	0.2660	0.2660	0.2000	0.265/
ChiSa	1.6652	20%	0.2400	0.2759	0.2/52	0.2/55	0.2755	0.2755	0.2/5/
Triang	+Infinity	25%	0.2857	0.2845	0.2835	0.2836	0.2836	0.2835	0.2843
Pareto	N/A	30%	0.2857	0.2922	0.2912	0.2912	0.2912	0.2911	0.2923
		35%	0.2857	0.2994	0.2984	0.2985	0.2985	0.2983	0.2998
		40%	0.2857	0.3062	0.3055	0.3056	0.3056	0.3053	0.30/1
		45%	0.3247	0.3130	0.3125	0.3126	0.3126	0.3123	0.3142
		50%	0.3247	0.3197	0.3196	0.3196	0.3196	0.3193	0.3213
		55%	0.3247	0.3266	0.3268	0.3268	0.3268	0.3265	0.3285
		60%	0.3506	0.3338	0.3343	0.3343	0.3343	0.3340	0.3360
		65%	0.3506	0.3415	0.3423	0.3422	0.3422	0.3419	0.3438
		70%	0.3506	0.3499	0.3508	0.3508	0.3508	0.3505	0.3522
		75%	0.3506	0.3594	0.3603	0.3602	0.3602	0.3600	0.3613
		80%	0.3506	0.3705	0.3712	0.3711	0.3711	0.3709	0.3717
		85%	0.4156	0.3845	0.3842	0.3841	0.3841	0.3841	0.3841
		90%	0.4156	0.4039	0.4012	0.4012	0.4012	0.4014	0.4001
		95%	0.4156	0.4373	0.4278	0.4279	0.4279	0.4286	0.4245
		٩							P.
@ 4h 🔳	A 1%	1%					Wri	te To Cell	Close

Table 10 Reactive plant – fault non-continuous distribution statistics table for A-D

Reactive plant outage rate - forced outage performance

Reactive plant forced unavailability data has a high representation in the middle and right tail of the distribution. The best fit distribution curve for both the K-S and A-D fit statistics is the Rayleigh distribution curve (figures 11 and 12), giving a standard deviation of 0.076.

Tables 11 and 12 are provided to show the variation in fit statistics of other distribution curves. The standard deviation for the curve of second best fit (Erlang) at 0.074 is not materially different.

Fit Ranking	-		Input	Rayleigh	Weibull	Uniform	Erlang	LogLogistic	Gamma
Fit	K-S	- Fit							
Ravleich	0.2017	Function	=	RiskRaylei	=RiskWeibu	=RiskUnifor	=RiskErlang	=RiskLogLo	=RiskGamm
Weibull	0.2072	- Distribution Stati	stics						
Uniform	0 2105	Minimum	0.0649	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Erlang	0.2109	Maximum	0.2468	+Infinity	+Infinity	0.3084	+Infinity	+Infinity	+Infinity
Loal oaistic	0 2119	Mean	0.1481	0.1448	0.1489	0.1542	0.1481	0.1556	0.1481
Gamma	0.2178	Mode	0.0695 [est]	0.1155	0.1325	0.0000	0.1110	0.1086	0.1142
Looporm	0.2170	Median	0.1299	0.1360	0.1437	0.1542	0.1359	0.1323	0.1369
Lognorm2	0.2209	Std. Deviation	0.0772	0.0757	0.0675	0.0890	0.0740	0,1106	0.0708
ToyCours	0.2209	Skewness	0.3700	0.6311	0.4323	0.0000	1.0000	14.8754	0.9562
InvGauss	0.2213	Kurtosis	0.8587	3.2451	2.9378	1.8000	4.5000	+Infinity	4.3715
Televe	0.2210	- Percentiles							
mang	0.3230	5%	0.0649	0.0370	0.0473	0.0154	0.0506	0.0532	0.0537
Expon	0.3551	10%	0.0649	0.0530	0.0643	0.0308	0.0646	0.0671	0.0676
Pareto2	0.3551	15%	0.0649	0.0659	0.0774	0.0463	0.0755	0.0774	0.0783
Chisq	0.6194	20%	0.0649	0.0772	0.0886	0.0617	0.0850	0.0862	0.0877
BetaGeneral	N/A	25%	0.0909	0.0876	0.0987	0.0771	0.0938	0.0942	0.0963
Pareto	N/A	30%	0.0909	0.0976	0.1082	0.0925	0.1023	0.1018	0.1045
Pearson6	N/A	35%	0.0909	0.1072	0.1173	0.1080	0.1106	0.1092	0.1125
		40%	0.0909	0.1167	0.1261	0.1234	0.1189	0.1167	0,1205
		45%	0.1299	0.1263	0.1349	0.1388	0.1273	0.1243	0.1286
		50%	0.1299	0.1360	0.1437	0.1542	0.1359	0.1323	0.1369
		55%	0.1299	0.1460	0.1526	0.1696	0.1450	0.1407	0.1456
		60%	0.2078	0.1564	0.1619	0.1851	0.1545	0.1499	0.1548
		65%	0.2078	0.1674	0.1715	0.2005	0.1649	0.1601	0.1647
		70%	0.2078	0.1792	0.1818	0.2159	0.1763	0.1718	0.1755
		75%	0.2078	0.1923	0.1931	0.2313	0.1891	0.1857	0.1878
		80%	0.2078	0.2072	0.2058	0.2468	0.2041	0.2030	0,2020
		85%	0.2468	0.2250	0.2208	0.2622	0.2226	0.2260	0.2195
		90%	0.2468	0.2479	0.2398	0.2776	0.2473	0.2608	0.2429
		95%	0.2468	0.2827	0.2683	0.2930	0.2870	0.3285	0.2803
		•			1				•
	AIR						-114		1 -

Table 11 Reactive plant – forced non-continuous distribution statistics table for K-S

Figure 12 Reactive plant – forced non-continuous distribution comparison using A-D

Fit Ranki	ng 🗾	1-1-1-1	Input	Rayleigh	Erlang	LogLogistic	InvGauss	Lognorm	Lognorm2
Fit	A-D	- Fit						mi la	
Ravleich	0.2172	Function	=	RiskRaylei =	RiskErlang	=RiskLogLo	=RiskInvGa	=RiskLogno	=RiskLogno
Erlang	0.2296	- Distribution State	SUCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LogLogistic	0.2341	Minimum	0.0649	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
InvGauss	0.2477	Maximum	0.2468	+Infinity	+Infinity	+Infinity	+infinity	+Infinity	+Infinity
Loanorm	0.2497	Mean	0.1481	0.1448	0.1481	0.1556	0.1481	0.1488	0.1488
Lognorm2	0.2497	Mode	0.0695 [est]	0.1155	0.1110	0.1086	0.0995	0.1026	0.1026
Pearson5	0.2510	Median	0.1299	0.1360	0.1359	0.1323	0.1306	0.1315	0.1315
Gamma	0.2568	Std. Deviation	0.0772	0.0757	0.0740	0.1106	0.0772	0.0790	0.0790
Weibull	0.2672	Skewness	0.3/00	0.6311	1.0000	14.8/54	1.5652	1.7407	1.7407
Uniform	0.3190	Kurtosis	0.8587	3.2451	4.5000	+Infinity	7.0832	8.8303	8,8303
Expon	0.6857	- Percentiles	0.0540	0.0770	0.0506	0.0500	0.0500	0.0500	0.0500
Pareto2	0.6857	5%	0.0649	0.0370	0.0506	0.0532	0.0588	0.0580	0.0580
ChiSa	2,1240	10%	0.0649	0.0530	0.0646	0.06/1	0.0696	0.0695	0.0695
Triang	+Infinity	15%	0.0649	0.0659	0.0755	0.0774	0.0782	0.0785	0.0785
BetaGeneral	N/A	20%	0.0649	0.0772	0.0850	0.0862	0.0859	0.0865	0.0865
Pareto	N/A	25%	0.0909	0.0876	0.0938	0.0942	0.0933	0.0940	0.0940
Pearson6	N/A	30%	0.0909	0.0976	0.1023	0.1018	0.1004	0.1013	0.1013
		35%	0.0909	0.1072	0.1106	0.1092	0.1076	0.1085	0.1085
		40%	0.0909	0.1167	0.1189	0.1167	0.1150	0.1159	0,1159
		45%	0.1299	0.1263	0.12/3	0.1243	0.1226	0.1235	0.1235
		50%	0.1299	0.1360	0.1359	0.1323	0.1306	0.1315	0.1315
		55%	0.1299	0.1460	0.1450	0.1407	0.1391	0.1400	0.1400
		60%	0.2078	0.1564	0.1545	0.1499	0.1484	0.1492	0.1492
		65%	0.2078	0.1674	0.1649	0.1601	0.1587	0.1593	0.1593
		70%	0.2078	0.1792	0.1763	0.1718	0.1702	0.1707	0.1707
		75%	0.2078	0.1923	0.1891	0.1857	0.1836	0.1840	0,1840
		80%	0.2078	0.2072	0.2041	0.2030	0.1997	0.1999	0,1999
		85%	0.2468	0.2250	0.2226	0.2260	0.2202	0.2203	0.2203
		90%	0.2468	0.2479	0.2473	0.2608	0.2487	0.2489	0.2489
		95%	0.2468	0.2827	0.2870	0.3285	0.2968	0.2983	0.2983
		4							•
al 414 🗖		1%					M/r	ite To Cell	Close

Table 12 Reactive plant – forced non-continuous distribution statistics table for A-D

Transformers outage rate - fault performance

The best fitting curve for Transformers unavailability caused by fault using the K-S fit statistic is the Pearson5 distribution (figure 13) curve while the A-D fit statistic has the LogLogistic distribution curve as the best fit (figure 14). As the data for Transformers unavailability caused by fault data is concentrated in the middle of the distribution, the K-S fit statistic (Pearson5) is preferred giving a standard deviation of 0.085.

Tables 13 and 14 show the difference in how the K-S and A-D fit statistics rated the distribution curves according their goodness of fit to the data range. The standard deviation for the curve of second best fit (Triang) is lower at 0.069, and for LogLogistic is similar at 0.089.

Fit Rankin	g 👤		Input	Pearson5	Triang	InvGauss	Lognorm	Lognorm2	Pearson
Fit	K-S	_ Fit		Dislorence	Distriction	Diskt of Co	Disksanse	Disk same	Diskonser
Pearson5	0.1875	Pinction	=	RISKPears	=Riskinang	=RISKINVGa	=RISKLogno	=RISKLOGNO =	=RISKPears.
Triang	0.1892	- Distribution State	0.0760	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
InvGauss	0.1962	Maximum	0.0769	U.0000	0.0000	(Tofinity)	U.0000	U.0000	1 Tofoit
ognorm	0.2000	Maan	0.2733	0 1629	0.3334	0 1607	0.1610	0.1610	0.161
Lognorm2	0.2000	Mada	0.0810 [cet]	0.1120	0.1352	0.1105	0.1010	0.1010	0.101
Pearson6	0.2012	Modian	0.0019 [ESI]	0.1422	0.1201	0.1452	0,1219	0.1219	0.122
ogLogistic	0.2025	Chil Davistian	0.1316	0.0954	0.1473	0.1403	0.0700	0.1407	0.140
Rayleigh	0.2059	Sta. Deviation	0.0765	0.0004	0.0007	1.2421	1.4454	1.4454	1.540
Gamma	0.2245	Skewness	0.0452	2.0910	0.2305	1.3421	1.4404	1.4404	1.540
Erlang	0.2315	Derceptiles	3.3433	20.0005	2,4000	6.0022	0.9511	0.9511	7.049
Uniform	0.2395	- Fercentules	0.0760	0.0752	0.0459	0.0779	0.0722	0.0722	0.073
Weibull	0.2447	109/	0.0769	0.0755	0.0430	0.0720	0.0725	0.0945	0.072
BetaGeneral	0.2699	10 /8	0.0769	0.0037	0.0040	0.0037	0.0070	0.0070	0.004
Expon	0.3803	208/	0.0769	0.0930	0.0734	0.0937	0.1031	0.0939	0.103
ChiSq	0.5994	20%	0.0769	0.1010	0.0917	0.1017	0.1021	0.1021	0.102
Pareto	N/A	20%	0.1261	0.1077	0.1023	0.1092	0.1090	0.1171	0.117
Pareto2	N/A	2076	0.1201	0.1210	0.1212	0.1103	0.1242	0.1242	0.11/
		40%	0.1261	0.1210	0.1213	0.1237	0,1245	0.1316	0,121
		10 %	0.1201	0.12/0	0.1297	0.1310	0.1310	0.1310	0,131
		50%	0.1316	0.1422	0.1304	0.1363	0.1350	0.1390	0.139
		50 %	0.1316	0.1502	0.1570	0.1545	0.1540	0.1540	0.154
		5576	0.1010	0.1500	0.1570	0.1545	0.1575	0.1575	0.157
		65%	0.1933	0.1590	0.1071	0.1034	0,1030	0.1030	0.103
		70%	0.1933	0.1000	0.1779	0.1731	0 1830	0.1/32	0 183
		75%	0.1933	0.1000	0.2010	0 1044	0 1040	0.1055	0.105
		90%	0.1933	0.1931	0.2019	0.1904	0.1902	0.1962	0.195
		959/	0.1933	0.2093	0.2130	0.2112	0.2100	0.2100	0,210
		0.0%	0.2759	0.2500	0.2510	0.2290	0.2292	0.2292	0.220
		05%	0.2759	0.2014	0.2303	0.2355	0.234/	0.2047	0.254
		3370	0.2759	0.31//	0.2/40	0.23/9	0.2379	0.2579	0.290
	an a			9					

Table 13 Transformers – fault non-continuous distribution statistics table for K-S

Figure 14 Transformers – fault non-continuous distribution comparison using A-D

Fit Rankin	ng 🗾	1 miles	Input	LogLogistic	InvGauss	Lognorm	Lognorm2	Pearson6	Pearson5
Fit	A-D	- Fit		Dield and a	DiskInuCa	Diski sama	Dield anna	DiskDaasa	DieleDeese
	0.2135	- Distribution Stati	atice	=RISKLOGLO	=RISKINVGd	=RiskLogno	=RISKLOGHO	=RISKPears	=RISKPears
InvGauss	0.2222	- Distribution State	0.0760	0.0000	0.000	0.0000	0.0000	0.000	0.0000
Lognorm	0.2224	Maximum	0.0769	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity
Lognorm2	0.2224	Mean	0.1607	0.1635	0 1607	0.1610	0.1610	0 1611	0 1628
Pearson6	0.2226	Mode	0.0819 [ect]	0.1270	0.1007	0.1010	0.1010	0.1011	0.1138
Pearson5	0.2305	Median	0 1316	0.1275	0.1463	0.1467	0.1215	0.1225	0.1422
Gamma	0.2317	Std Deviation	0.1310	0.0995	0.1405	0.0726	0.0726	0.0722	0.0954
Rayleigh	0.2464	Skewpers	0.8432	4 6772	1 3421	1 4454	1 4454	1 5405	2 9019
Erlang	0.2498	Kurtosis	3 3453	+Infinity	6.0022	6 0311	6 0311	7 8406	26 8605
Triang	0.2514	- Percentiles	5,5455	Tardinity	0.0022	0.9511	0.9511	7.0490	20.0000
Weibull	0.2521	5%	0.0769	0.0688	0.0728	0.0723	0.0723	0.0721	0.0753
BetaGeneral	0.3390	10%	0.0769	0.0833	0.0845	0.0845	0.0845	0.0845	0.0857
Uniform	0.4665	15%	0.0769	0.0938	0.0937	0.0939	0.0939	0.0941	0.0938
Expon	0.8404	20%	0.0769	0,1026	0.1017	0.1021	0,1021	0, 1023	0,1010
ChiSq	2.0761	25%	0.1261	0 1104	0 1092	0 1098	0 1098	0 1100	0 1077
Pareto	N/A	30%	0,1261	0.1178	0,1165	0,1171	0,1171	0.1173	0.1144
Pareto2	N/A	35%	0.1261	0.1249	0.1237	0.1243	0,1243	0,1245	0.1210
		40%	0,1261	0,1319	0,1310	0,1316	0,1316	0,1317	0,1278
		45%	0,1316	0,1390	0,1385	0.1390	0,1390	0.1391	0.1348
		50%	0.1316	0.1464	0,1463	0,1467	0,1467	0.1468	0.1422
		55%	0,1316	0.1541	0,1545	0.1549	0,1549	0.1549	0,1503
		60%	0.1933	0,1624	0,1634	0.1636	0.1636	0.1636	0.1590
		65%	0.1933	0.1716	0,1731	0.1732	0.1732	0.1731	0,1688
		70%	0.1933	0.1819	0.1840	0.1839	0.1839	0.1837	0.1800
		75%	0.1933	0.1941	0.1964	0.1962	0.1962	0.1959	0.1931
		80%	0.1933	0.2089	0.2112	0.2108	0.2108	0.2105	0.2093
		85%	0.2759	0.2285	0.2298	0.2292	0.2292	0.2289	0.2306
		90%	0.2759	0.2573	0.2553	0.2547	0.2547	0.2545	0.2614
		95%	0.2759	0.3116	0.2979	0.2979	0.2979	0.2982	0.3177
		•	1. 3008051	1			10.000	12/2015/201	•
	A LIP/	19/1					141.4	- T- C-II	

Table 14 Transformers – fault non-continuous distribution statistics table for A-D

Transformers outage rate – forced outage performance

120 0.3427

80

60 N/A

0.00

0.02

0.04

90.0

0.08

0.10

0.12

0.14

Write To Cell

0.3847 100

0.4476

0.6936

N/A

N/A

N/A

0 🜆 🖻 🛕 🖄 🔳

Uniform

Expon

Triang

ChiSq

Pareto

Pareto2 Pearso

LogLogistic

The data for forced unavailability of transformers is best fitted with a BetaGeneral distribution curve (figure 15) according to the K-S fit statistic. The A-D fit statistic has the Weibull distribution curve as the best fit (figure 16). As the data is distributed across both the middle and tails of the distribution, the A-D fit statistic is preferred (Weibull), giving a standard deviation of 0.034.

Tables 15 and 16 presents the variation in the distribution curve statistics between K-S and A-D fit statistics. The standard deviation for the curve of second best fit (Gama) is higher at 0.045 and for BetaGeneral is similar at 0.038.

Figure 15 Transformers – forced non-continuous distribution comparison using K-S

0.155

0.00 0.155 0.122

Close

Std Dev 0.0432

Std Day 0.0383

0.16

Fit Rankin	ng 💻		Input	BetaGeneral	Rayleigh	Lognorm	Lognorm2	Pearson5	Gamma
Fit	K-S	- Fit		Dislander	DiskDaudai	Dield annua	Dield a see	DiskDarase	DiskGauss
BetaGeneral	0.2140	Distribution Stati	atica	=RISKBetaG	=RiskRaylel	=RISKLOGHO	=RISKLOGNO =	=RISKPears =	=RISKGamm
Rayleigh	0.3242	Minimum	0.0504	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lognorm	0.3246	Maximum	0.0504	0.0000	+Infinity	Linfoity	+Infinity	+Infinity	+Infinity
Lognorm2	0.3246	Mean	0.1332	0.1332	0.1116	0 1215	0.1215	0.1250	0 1108
Pearson5	0.3251	Mode	0.0530 [ect]	0.1552	0.0890	0.0035	0.0935	0.0843	0.1026
Gamma	0.3269	Modian	0.0330 [231]	0.1392	0.1048	0.1112	0.1117	0.1076	0.1141
Erlang	0.3272	Std Deviation	0.1423	0.1300	0.0593	0.0531	0.0531	0.0705	0.0454
InvGauss	0.3335	Skewpess	-1 3663	-1 2404	0.6311	1 3045	1 2045	3 3120	0.7575
Weibull	0.3345	Kurtonia	4 1651	2 5595	2 2451	6 6461	6 6461	20 1475	2 9607
Uniform	0.3427	- Percentiles	4,1051	5.5500	5.2451	0.0401	0.0401	35.1470	5.8007
Expon	0.3847	5%	0.0504	0.0380	0.0285	0.0560	0.0560	0.0554	0.0561
Triang	0.4476	10%	0.0504	0.0598	0.0409	0.0651	0.0651	0.0633	0.0666
ChiSq	0.6936	15%	0.0504	0.0767	0.0507	0.0031	0.0722	0.0696	0.0743
LogLogistic	N/A	20%	0.0504	0.0906	0.0595	0.0722	0.0783	0.0751	0.0809
Pareto	N/A	25%	0.1053	0 1022	0.0675	0.0840	0.0840	0.0804	0.0869
Pareto2	N/A	30%	0.1053	0 1121	0.0752	0.0894	0.0894	0.0856	0.0925
Pearson6	N/A	35%	0.1053	0.1204	0.0826	0.0948	0.0948	0.0908	0.0980
		40%	0,1053	0.1275	0.0900	0,1001	0,1001	0.0961	0,1033
		45%	0.1429	0,1335	0.0973	0,1056	0,1056	0.1017	0,1087
		50%	0.1429	0.1386	0 1048	0 1113	0 1113	0 1076	0.1141
		55%	0.1429	0.1428	0.1125	0.1173	0.1173	0.1139	0.1198
		60%	0.1453	0.1462	0,1205	0,1238	0.1238	0,1209	0.1257
		65%	0.1453	0.1489	0,1290	0,1308	0,1308	0.1288	0,1320
		70%	0,1453	0,1511	0,1381	0,1386	0,1386	0,1378	0,1388
		75%	0.1453	0,1527	0,1482	0,1476	0,1476	0,1484	0,1465
		80%	0.1453	0,1538	0,1597	0,1583	0.1583	0.1616	0,1554
		85%	0,1552	0,1545	0,1734	0,1717	0.1717	0,1790	0,1662
		90%	0,1552	0,1550	0.1910	0,1902	0.1902	0.2044	0.1804
		95%	0,1552	0.1551	0.2179	0.2214	0.2214	0.2515	0,2029
		4							•
- 1 - 1 - 1									1

Table 15 Transformers – forced non-continuous distribution statistics table for K-S

Figure 16 Transformers – forced non-continuous distribution comparison using A-D

Table 16 Transformers – forced non-continuous distribution statistics table for A-D

Fit Rankir	ng 💌		Input	Weibull	Gamma	Erlang	Rayleigh	Lognorm	Lognorm2
Fit	A-D	_ Fit		mi lan d				m. Li	
Weibull	0.5817	Function		=RiskWeibu	=RiskGamm	=RiskErlang	=RiskRaylei	=RiskLogno	=RiskLogno.
Gamma	0.6048	- Distribution State	SUCS	0.0000	0.0000	0.0000	0.0000		0.0000
Erlang	0.6061	Minimum	0.0504	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ravleigh	0.6492	Maximum	0.1552	+Infinity	+infinity	+Infinity	+Infinity	+Infinity	+Infinity
ognorm	0.6546	Mean	8611.0	0.1203	0.1198	0.1198	0.1116	0.1215	0.1215
ognorm2	0.6546	Mode	0.0530 [est]	0.1233	0.1026	0.1027	0.0890	0.0935	0.0935
nvGauss	0.6870	Median	0.1429	0.1210	0.1141	0.1141	0.1048	0.1113	0.1113
Pearson5	0.7181	Std. Deviation	0.0432	0.0344	0.0454	0.0453	0.0583	0.0531	0.0531
Iniform	0.8706	Skewness	-1.3663	-0.0700	0.7575	0.7559	0.6311	1.3945	1.3945
vpon	1.1343	Kurtosis	4,1651	2.7396	3.8607	3.8571	3.2451	6.6461	6.6461
hisa	2,6151	- Percentiles							
letaGeneral	+Infinity	5%	0.0504	0.0623	0.0561	0.0562	0.0285	0.0560	0.0560
riang	+Infinity	10%	0.0504	0.0748	0.0666	0.0667	0.0409	0.0651	0.0651
oal paietic	NI/A	15%	0.0504	0.0836	0.0743	0.0744	0.0507	0.0722	0.0722
areto	N/A	20%	0.0504	0.0906	0.0809	0.0810	0.0595	0.0783	0.0783
Parato 2	N/A	25%	0.1053	0.0967	0.0869	0.0870	0.0675	0.0840	0.0840
Dearcon6	N/A	30%	0.1053	0.1022	0.0925	0.0926	0.0752	0.0894	0.0894
carsono	Пун	35%	0.1053	0,1072	0.0980	0.0980	0.0826	0.0948	0.0948
		40%	0.1053	0.1120	0.1033	0.1034	0.0900	0.1001	0.1001
		45%	0.1429	0.1166	0.1087	0.1087	0.0973	0.1056	0.1056
		50%	0.1429	0.1210	0.1141	0.1141	0.1048	0.1113	0.1113
		55%	0.1429	0.1255	0.1198	0.1198	0.1125	0.1173	0.1173
		60%	0.1453	0.1300	0.1257	0.1257	0.1205	0.1238	0.1238
		65%	0.1453	0.1346	0.1320	0.1320	0.1290	0.1308	0.1308
		70%	0.1453	0.1394	0.1388	0.1388	0.1381	0.1386	0.1386
		75%	0.1453	0.1445	0.1465	0.1465	0.1482	0.1476	0.1476
		80%	0.1453	0.1501	0.1554	0.1553	0.1597	0.1583	0.1583
		85%	0.1552	0.1565	0.1662	0.1661	0.1734	0.1717	0.1717
		90%	0.1552	0.1645	0.1804	0.1803	0.1910	0.1902	0.1902
		95%	0.1552	0.1759	0.2029	0.2027	0.2179	0.2214	0.2214
		٠	102000000000						۲
	A IP/	18/ 17							1 -

3. Summary of findings

Table 17 summarises the probability distribution functions that have been chosen to best fit the parameter data (table 18). In Parsons Brinckerhoff's view this approach is robust and does not seem to be sensitive to the choice of distribution function, because the results were close for the next best fit distributions. The approach is also consistent with the Australian Energy Regulator's previous regulatory decisions to use a curve of best fit approach.

Table 17 Summary of best fit distributions

Parameter	Best fit distribution	Standard Deviation
Average outage duration	Exponential	97.96
No. of events >0.05 system minutes	NegBin	2.000
No. of events >0.30 system minutes	IntUniform	0.816
Lines outage rate - fault	LogLogistic	0.090
Lines outage rate - forced outage	Pearson5	0.017
Reactive plant outage rate - fault	LogLogistic	0.064
Reactive plant outage rate - forced outage	Rayleigh	0.076
Transformers outage rate - fault	Pearson5	0.085
Transformers outage rate - forced outage	Weibull	0.034

Table 18 Reliability Data 2008-2012

Parameter	2008	2009	2010	2011	2012
Average outage duration	71.5	91.8	92.5	4.0	230.0
No. of events >0.05 system minutes	1	6	1	0	2
No. of events >0.30 system minutes	1	2	0	0	1
Lines outage rate - fault	20.0%	35.8%	16.8%	24.4%	32.5%
Lines outage rate - forced outage	16.7%	12.5%	14.3%	16.8%	14.2%
Reactive plant outage rate - fault	28.6%	35.1%	24.7%	32.5%	41.6%
Reactive plant outage rate - forced outage	6.5%	9.1%	13.0%	24.7%	20.8%
Transformers outage rate - fault	13.2%	27.6%	7.7%	12.6%	19.3%
Transformers outage rate - forced outage	10.5%	15.5%	14.5%	5.0%	14.3%