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Executive Summary 

Introduction 

As part of its periodic resets for Australia’s Distribution Network Service Providers (DNSPs), 
the Australian Energy Regulator (AER) performs regular benchmarking analysis of 
companies’ costs and outputs.  To do so, it relies on an annual benchmarking report from its 
consultants Economic Insights (EI) (EI Benchmarking Report), the most recent of which was 
released to DNSPs on 25 August 2020.1 

The AER is in the consultation phases of issuing a new reset for DNSPs in Victoria, and we 
understand that it will rely in part upon results from the 2020 EI Benchmarking Report in its 
final determinations. 

In the EI Benchmarking Report, EI carries out several analyses, including econometric 
estimation of the operating expenditure (opex) cost function (cost function) and multilateral 
partial factor productivity (MPFP) modelling. 

In the draft determinations for the DNSPs in Victoria, the AER uses results from the MPFP 
model to inform several components of DNSPs’ opex allowance: 

▪ The AER’s appraisal of whether each company’s base year opex is efficient is based in 
part on the results of MPFP benchmarking; 

▪ The AER’s determined output growth allowances depend in part on output weights 
derived from the MPFP model and 

▪ The AER’s determined productivity target draws on analysis from the MPFP model. 

United Energy commissioned NERA to review the mechanics of, and the AER’s reliance 
upon, the MPFP modelling in setting DNSPs’ opex allowances. 

We conclude that the MPFP modelling is based on a set of arbitrary assumptions and 
methodological choices.  The resulting efficiency scores and output weights are therefore not 
a reasonable reflection of DNSPs’ relative outputs, inputs and efficiency levels.  Therefore, 
the AER can place no reliance upon the MPFP modelling in its opex assessment process.  
Instead, the AER should place greater reliance upon the econometric cost functions, which do 
not suffer from the same deficiencies. 

Background of MPFP Modelling in Australia 

Network Regulation in Australia 

Since the National Electricity Rules (NER) were amended in 2008, the AER has been 
responsible for the economic regulation of electricity DNSPs of the National Electricity 
Market.  As part of its role as the economic regulator, the AER carries out periodic price 
resets, where reviews DNSPs’ proposed expenditure and chooses either to accept a DNSP’s 
proposal or replace it with its own determination. 

 
1  Economic Insights (25 August 2020), Econometric Benchmarking Results for the Australian Energy Regulator’s 2020 

DNSP Annual Benchmarking Report. 
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In making a price determination, the National Electricity Law (NEL) stipulates that the AER 
“must take into account the revenue and pricing principles”2, which themselves stipulate that 
a DNSP “should be provided with a reasonable opportunity to recover at least the efficient 
costs the operator incurs in” in providing distribution services.3 

The NER sets out a more detailed framework for how the AER should assess DNSPs’ 
proposals, and stipulates that the AER must accept a company’s opex proposal if it is 
satisfied that it reasonably reflects the efficient costs of providing distribution services.  If it 
is not satisfied that the company’s proposal reasonably reflects the efficient costs of 
providing distribution services, the AER must replace the DNSP’s proposal with its own 
determination.4   

In determining whether it is satisfied with a DNSP’s proposal, it must have regard to, among 
other factors, the annual AER Benchmarking Report.5  The AER Benchmarking Report 
draws heavily on the results from the EI Benchmarking Report. 

From these statutory obligations, it is clear that the analyses that the AER relies upon should 
themselves reflect the efficient costs of providing distribution services.  If they do not, then 
the AER may fail to accept a proposal that reflects the efficient costs of providing distribution 
services, and substitute it with a determination that does not reflect efficient costs.  This 
would be a violation of the NER.   

If the AER does fail to accept a proposal that reflects efficient costs and replaces it with a 
determination that does not, then the affected DNSPs will not have “a reasonable opportunity 
to recover at least the efficient costs” of providing distribution services.6  This would be a 
violation of the NEL. 

We appraise the MPFP model and the AER’s uses of it against the criterion that it is likely to 
reflect efficient operating costs.  We find that it does not.  Although no component of 
DNSPs’ opex allowances are derived exclusively from the MPFP model, it dilutes the 
reliance upon models that are more likely to reflect efficient costs.  In the best-case scenario, 
the MPFP modelling produces results similar to other techniques, in which case it does not 
add any new information. 

Technical Description of MPFP Modelling 

EI calculates MPFP efficiency scores as follows: 

First, EI calculates output weights based on a Leontief regression technique, which explains 
opex, overhead lines (OHL), underground cables (UG) and transformers as a function of four 
output variables: Energy Throughput (Energy), Ratcheted Maximum Demand (RM Demand), 
Customer Numbers (Customers) and Network Length (Length), as well as time.  It estimates 
52 separate regressions: 4 input variables times 13 DNSPs.  The regression model used is: 

 
2  National Electricity (South Australia), Act 1996, Schedule – National Electricity Law, Section 16(2). 
3  National Electricity (South Australia) Act 1996, Schedule – National Electricity Law, Section 7A(2). 
4  National Electricity Rules, v150, clause 6.5.6(c)-(e).  
5  National Electricity Rules, v150, clause 12.1(4).   
6  National Electricity (South Australia) Act 1996, Schedule – National Electricity Law, Section 7A(2). 
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𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �1 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑡𝑡 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

where 𝑖𝑖 indexes the input (one per regression); 𝑓𝑓 indexes the firm (one per regression); and 𝑡𝑡 
indexes time (13 years).  The level of the input at time 𝑡𝑡 is 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 and the level of output 1 at 
time 𝑡𝑡 is 𝑦𝑦1𝑓𝑓𝑓𝑓 (outputs 2-4 are analogous).  The output coefficients are 𝑎𝑎𝑖𝑖𝑖𝑖12  through 𝑎𝑎𝑖𝑖𝑖𝑖42 , 
which capture the contribution of the relevant output to input demand (the model forces the 
coefficient to be positive by requiring it to be a square).  The time coefficient 𝑏𝑏𝑖𝑖𝑖𝑖 captures 
how the relationship between the input and output changes over time.  

The contribution of each output to explaining each input for each output is then aggregated 
across the 52 models to give a single set of output weights.  The MTFP output weights from 
the 2020 EI Report are in Table 1 below:7 

Table 1: MTFP Output Weights 

  Energy RM Demand Customers Length 
MTFP 8.58% 33.76% 18.52% 39.14% 

Source: EI8 

These output weights then define an output index for each company in each year.  EI then 
divides the output index by each company’s opex. The resulting ratio in each year is the 
company’s opex MPFP score. 

EI calculates the multi-year (2006-19) comparative efficiency of companies in this model by 
calculating each company’s average MPFP score as a proportion of that of the top performing 
DNSP. 

Recent Developments in the AER’s MPFP Modelling 

As first introduced in 2014, the MPFP model had few uses.  The AER used the multi-year 
benchmarking results as one piece of evidence in deciding whether to accept a company’s 
base year opex proposal, but did not use it for any other purpose. 

Since its introduction in 2014, the AER has placed increasing weight on MPFP modelling in 
the overall price reset process, without presenting any evidence that it is suitable for its 
increased role. 

First, the AER now places more emphasis on the MPFP model when assessing a DNSP’s 
efficiency, relying not only on the company’s relative performance over an extended period 
of time, but also assessing efficiency on an individual year basis.  Second, the MTFP output 
weights feed directly into the output growth allowance, along with weights derived from the 
cost functions.  Finally, the AER relies in part on MPFP analysis to inform a productivity 
target of 0.5 per cent per year. 

 
7  These weights are used for other components of Multilateral Total Factor Productivity (MTFP) modelling, so we refer 

to them as MTFP weights. 
8  Economic Insights (25 August 2020), Econometric Benchmarking Results for the Australian Energy Regulator’s 2020 

DNSP Annual Benchmarking Report, p.3. 
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As a result of the AER’s recent increasing reliance on the MPFP modelling as described 
above, the models have been subject to greater scrutiny from DNSPs and their advisors, and 
EI has responded in turn.   

In December 2018, we wrote a report criticising the introduction of the MTFP weights into 
the output growth allowance.  We argued that the econometric techniques underpinning the 
calculation of the weights were unreliable and produced weights which were highly 
arbitrary.9   

In early 2019, EI responded in the form of a memo to the AER.  It responded to and 
attempted to rebut each of our criticisms.10  As we demonstrate throughout this report, its 
response failed to adequately defend its modelling techniques. 

In December 2019, Frontier Economics reviewed both our report and EI’s response, and 
concluded that the Leontief econometric model had statistical problems “so severe that they 
cannot be overcome by taking weighted averages”.11  Frontier also identified a coding error 
in EI’s econometric models. 

In April 2020, EI responded to Frontier’s criticisms, and corrected its coding error.  It argued 
that in correcting its coding error, it had removed the statistical problems with the Leontief 
regression and could therefore continue relying upon it.  This is not the case. 12 

Appraisal of MPFP Modelling 

In this section, we review the mechanics of the MPFP modelling.  We find that, due to 
numerous statistical failings and other methodological shortcomings, the AER’s use of it is 
unlikely to reflect the efficient costs of providing distribution services.  Therefore, in relying 
upon it, the AER violates its obligations under the NEL and the NER. 

Assessment of the Leontief Econometric Models 

We first assess the Leontief econometric equations which estimate the relationship between 
outputs (the independent variable) and each of four inputs (the dependent variables), across 
four inputs and 13 DNSPs.  Even when correcting for the coding error described above, there 
are numerous technical problems with this econometric specification, such that the 
coefficients and resulting output weights are effectively meaningless. 

1. We have not been able to identify any use of this econometric specification other than by 
EI or its affiliates (i.e. Dr Denis Lawrence and entities associated with him), and EI has 
not cited any.  In combination with the substantial statistical problems we identify (see 
below), this suggests that they have not been properly validated and subject to rigorous 
peer review.   

 
9  NERA (18 December 2018), Review of AER’s Proposed Output Weightings – Prepared for CitiPower, Powercor, 

United Energy and SA Power Networks. 
10  Economic Insights (30 April 2019), Review of NERA report on output weights. 
11  Frontier Economics (5 December 2019), Review of Econometric Models Used by the AER to Estimate Output Growth 

– A report prepared for CitiPower, Powercor and United Energy, p.1-2. 
12  Economic Insights (18 May 2020), Review of reports submitted by CitiPower, Powercor and United Energy on opex 

input price and output weights, p.17. 
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2. The Leontief model specification does not have a constant.  Because all outputs and 
inputs are substantially larger than zero relative to their level of variation, this 
specification guarantees that at least one output coefficient will be statistically significant, 
or that multiple will be jointly significant if no single coefficient is individually 
significant.  This is true even if there is no relationship between any of the output 
variables and the input variable in question, or if there is insufficient data to estimate that 
relationship. 

3. Time enters into the specification as a multiplicative rather than additive term.  This is 
non-standard and illogical.  First, the estimated coefficients on time and outputs depend 
on whether time is counted from 0 to 12 or from 2006 to 2013 (or indeed any other 
range), which has no intuitive explanation.  Second, the coefficients on outputs are 
biased, because the model fails to capture additional effects of time which do not relate to 
the levels of the outputs. 

4. There is very little evidence that the true values of any or all coefficients are not zero 
(meaning they should have zero output weights).  It is standard in econometrics to assess 
whether regression coefficients are significantly different from zero.  By EI’s own 
calculations, 66 per cent of the coefficients EI estimates are not significant.  Additionally, 
EI uses an overly generous evaluation of significance, which ignores the fact that, when 
assessing many coefficients, some of them will appear significant simply by chance.  
Using a more appropriate evaluation we find that 80 per cent of coefficients are not 
significant.  Additionally, of those that are, it is not possible to say whether they are 
significant because they drive costs, or because they act as a proxy for the omitted 
constant term. 

We estimate the sensitivity of the coefficients to the following changes in this specification: 

▪ We introduce a constant term; 
▪ We introduce a linear rather than multiplicative time trend; 
▪ We re-specify the input and output variables as natural logarithms, consistent with the 

specification of the cost functions, as well as econometric benchmarking models 
worldwide; 

▪ We pool together the data across the 13 DNSPs and run four panel fixed effects models, 
which estimates the effect of each output on the relevant input across all 13 companies 
simultaneously. 

In Figure 1 below, we show how the percentage of statistically significant coefficients on 
each output changes under the different specifications, excluding the panel fixed effects 
model because each variable only appears four rather than 52 times.  
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Figure 1: Fewer coefficients are significant using alternative model specifications 

 
Source: NERA analysis   

As the figure shows, most outputs are less likely to be statistically significant in each of the 
sensitivities we test, with Customers and Length appearing to be especially sensitive to the 
specification. 

We do not advocate for any one of the alternative regression models that we try, as they are 
all variants on an econometric specification that is deeply flawed.  Rather, these sensitivities 
demonstrate that the approach is sensitive to the underlying regression specification, and 
there is no reason to use EI’s particular variant over any of those that we consider.  Thus, it is 
not reasonable to use them as the basis for MPFP calculations.   

Process of Combining Coefficients into Output Weights 

The model weights vary counterintuitively between companies 

The process of combining coefficients into output weights involves aggregating the 
contribution of each output to the fitted level of each input variable across the 52 regressions.  
We present the contribution of each variable to the fitted value of each input this in Table 2 
below, separated by input and DNSP. 
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Table 2: Contribution of Outputs to Inputs 

Input: Opex 
  Energy RM Demand Customers Length 
ACT 0% 8% 0% 93% 
AGD 0% 100% 0% 0% 
AND 0% 100% 0% 0% 
CIT 100% 0% 0% 0% 
END 90% 0% 0% 11% 
ENX 0% 100% 0% 0% 
ERG 0% 10% 0% 90% 
ESS 0% 0% 100% 0% 
JEN 0% 0% 100% 0% 
PCR 0% 11% 0% 89% 
SAP 0% 100% 0% 0% 
TND 100% 0% 0% 0% 
UED 94% 6% 0% 0% 

 

Input: Overhead Lines 
  Energy RM Demand Customers Length 
ACT 0% 82% 0% 19% 
AGD 0% 0% 0% 100% 
AND 0% 1% 0% 99% 
CIT 0% 0% 21% 79% 
END 0% 29% 0% 71% 
ENX 0% 4% 0% 96% 
ERG 0% 25% 0% 75% 
ESS 24% 0% 0% 76% 
JEN 0% 3% 28% 69% 
PCR 0% 0% 62% 38% 
SAP 11% 0% 17% 72% 
TND 19% 0% 0% 81% 
UED 0% 12% 88% 0% 

 

Input: Underground Cables 

 Energy RM Demand Customers Length 
ACT 0% 36% 0% 64% 
AGD 0% 0% 0% 100% 
AND 0% 0% 100% 0% 
CIT 13% 0% 0% 87% 
END 0% 0% 0% 100% 
ENX 0% 100% 0% 0% 
ERG 0% 100% 0% 0% 
ESS 0% 61% 0% 39% 
JEN 0% 0% 0% 100% 
PCR 0% 87% 13% 0% 
SAP 0% 29% 0% 71% 
TND 0% 0% 32% 68% 
UED 0% 16% 40% 44% 
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Input: Transformers 
  Energy RM Demand Customers Length 
ACT 20% 0% 0% 80% 
AGD 0% 100% 0% 0% 
AND 0% 58% 31% 11% 
CIT 51% 4% 0% 46% 
END 0% 10% 0% 91% 
ENX 0% 38% 0% 62% 
ERG 0% 0% 100% 0% 
ESS 0% 0% 100% 0% 
JEN 0% 20% 0% 80% 
PCR 0% 8% 0% 92% 
SAP 28% 10% 0% 62% 
TND 0% 0% 100% 0% 
UED 0% 29% 71% 0% 

Source: NERA analysis 

The contribution of each output to the fitted level varies substantially and counterintuitively 
across the 52 regressions.   

The opex regressions suggest that all companies have a single primary driver of opex, but it 
appears effectively random what that driver is.  That each company has a different driver of 
opex according to EI’s analysis undermines the basis for estimating a single cost-function and 
common set of output weights in the first place:  EI’s evidence suggests that the companies 
have different drivers of costs and entirely different output weights. 

If the OHL and UG regressions have some basis in actual cost relationships, they should be 
driven primarily by Length with a secondary contribution from RM Demand, since the 
dependent variable is measured in MVAkm, effectively a linear combination of length and 
capacity.  However, while the OHL regressions are mostly primarily driven by Length, not all 
of them are, and RM Demand is no more important as a secondary driver than the other two 
outputs.  The UG regressions are even less closely driven by Length and RM Demand – 
Length is the primary driver in only 7 of 13 models, and a secondary driver in 2 others. 

EI argues that it “minimise[s] the risks associated with the limited degrees of freedom per 
regression and the fixed propositions nature of the Leontief cost function [by taking] a 
weighted average of the derived output cost shares across all the Australian DNSP 
observations”.13  However, this relies on an assumption that the probability that the model 
will assign a high weight to a particular output variable is equal to that output’s importance in 
driving costs.  As we demonstrate above, this is unlikely to be the case. 

Arbitrary weight is placed on the OHL, UG and Transformer models 

It is unclear why the capital input models (OHL, UG and Transformers) are even relevant to 
determining opex MPFP outputs, and EI provides no explanation as such.  These output 
weights are used to define aggregate output, which is used to assess MPFP and MTFP across 
all inputs, including capital inputs such as lines and transformers.   

 
13  Economic Insights (30 April 2019), Review of NERA Report on Output Weights, p.6. 
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Our analysis shows that opex has a weight of only 36.9 per cent in the construction of the 
weights.  As a result, opex productivity scores are set on the basis of output weights that are 
more than half determined by outputs’ effect on non-opex inputs.  Therefore, the AER fails to 
identify the drivers of efficient opex, which would require (at a minimum) an assessment of 
how outputs are related to opex.  This would also be consistent with the cost function models, 
which only estimate opex as the dependent variable. 

However, weights derived from just the opex Leontief regressions alone are not themselves 
reliable.  Their calculation is still subject to all of the flaws associated with the econometric 
regression. 

EI’s approach gives weight to meaningless variables 

By using squared coefficients, the EI Leontief model forces the output coefficients in each 
regression to be non-negative.  In averaging across 52 regressions, as long as a variable 
receives a positive coefficient at least once, then it will receive a strictly positive weight in 
the final MTFP weights. 

Due to the imprecision with which the model is estimated, with an illogical specification and 
very little data, it is incorrect to assume that a variable with a non-existent relationship would 
always receive a coefficient of zero.  Even in a properly-specified regression equation with 
sufficient degrees of freedom, we would expect a meaningless variable to have a statistically 
significant coefficient about 5 per cent of the time, or two to three times out of 52 
regressions. 

We demonstrate that EI’s method attributes positive weight to meaningless series by 
removing the Energy variable as reported by companies and replacing it with a random 
number generated based on the mean and standard deviation of each company’s actual 
Energy value.  In effect, this randomly generated variable resembles each company’s energy 
variable in level and distribution but without any relation to cost in each year because random 
variations in it could not possibly explain variations in cost.  We replicate this analysis 100 
times and report weights resulting from each simulation in Figure 2 below.   
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Figure 2: Weight Assigned to Random Energy Variable 

 
Source: NERA analysis  

As the figure shows, the output weight assigned to this random variable is larger than the 
weight assigned to the actual Energy in 95 per cent of cases, even though it clearly bears no 
relation to variations in cost.  This suggests that Energy is no stronger a driver of cost than a 
random number with a similar average level. 

A similar story emerges if we remove Energy as a driver in the 52 regressions and replace it 
with a variable that we know to be spurious.  We have done this using the following data 
series in place of Energy: (i) Annual flights to and from Melbourne Airport; (ii) The 
exchange rate between British Pounds Sterling and New Zealand Dollars (expressed as GBP 
per NZD);(iii) The number of girls born in the Republic of Ireland each year named Zoe.  
This variable receives 19 per cent weight; and (iv) Energy delivered by a different DNSP.  In 
(i)-(iii), the spurious variable receives higher weight than the company’s Energy variable.  In 
7 of 12 degrees of offset (i.e. Degree 1 is AGD’s Energy explaining ACT’s costs; Degree 2 is 
AND’s Energy explaining ACT’s costs, etc), the other company’s Energy variable receives 
higher weight than the same company’s Energy variable.  

With ample time and computational resources, it is possible to data-mine any number of 
spurious relationships in any context.  We have carried out no such exercise in this case.  In 
fact, our analysis demonstrates that virtually any spurious variable will receive a positive 
weight, so long as it is positive and exhibits similar levels of variation around its mean as the 
MTFP input variables.  The restrictive econometric specification (i.e. forced non-negative 
coefficients and no constant) means that variables with negative values or large variation 
relative to its mean are unlikely to receive positive coefficients and, hence, MTFP weights. 
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In fact, all of the spurious data series above (including the randomly-generated Energy 
variables above) have one key feature in common: they all exhibit similar levels of variation 
relative to their mean levels.  Due to the restrictions of the econometric specification (non-
negative coefficients and no constant), most regressions only have one variable with only one 
non-zero output coefficients.  Therefore, a variable with any negative values or with large 
variation relative to its mean would be very unlikely to explain opex or the capital inputs, 
which exhibit relatively little variation relative to their means in each year.   

The same is not true in a less restrictive specification: an independent variable’s negative 
values could be captured by a negative coefficient and a volatile variable to could receive a 
smaller coefficient plus a positive constant.  Our analysis demonstrates that, once we have 
accounted for the restrictive econometric specification, it is very easy to find variables that 
apparently drive MTFP inputs. 

In short, the flaws of the econometric specification coupled with the small sample sizes 
means that the finding of a positive econometric relationship does not suggest a positive 
causal relationship, even if it is statistically significant.  Because the approach places 
excessive weight on meaningless variables, and weights must sum to 100 per cent, EI’s 
approach also assigns insufficient weight to meaningful variables. 

Different econometric specifications yield different output weights 

The weights allocated to each of the four outputs depend on the regression specification used.  
In Figure 3, we demonstrate the sensitivity of the ultimate weights to each of the alternative 
econometric specifications discussed above, as well as the 5th and 95th percentile iterations (in 
terms of weight on Energy) from the Random Energy simulation above.  We also show the 
weights from the cost functions for comparison. 
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Figure 3: Output weights vary with regression specifications 

 
Source: NERA analysis 

The sensitivity of the output weights to the regression specification is clear.  The output 
weight allocated to energy is halved when moving from the EI model to the panel fixed 
effects model.  The weight allocated to customer numbers shrinks to less than a third of its 
previous value in all alternative specifications.  In the EI model, circuit length is the greatest 
contributor to output costs; in all alternative specifications, demand is the greatest 
contributor. 

Overall, this analysis illustrates that the output weights derived from the Leontief regressions 
are not reliable because they are volatile and precarious to changes in model specification.  
Alternative, more plausible specifications of the regressions yield very different weights. 

In short, we conclude that the weights that actually come out of the Leontief specification are 
effectively random.  EI could select four weights at random and not be further from the truth 
than it is under these output weights. 

Implications of Output Weight Calculations 

The MPFP model has three direct uses in the opex assessment process: (1) the AER uses it to 
assess whether a DNSP’s base year opex is efficient; (2) the AER bases the output growth 
allowance in part on the MTFP weights; and (3) the AER applies a productivity adjustment 
derived in part from MPFP analysis.   

Each of these uses is sensitive to the choice of output weights.  Hence, the use of the MPFP 
model reduces the likelihood that the AER correctly identifies a DNSP’s efficient opex.  
Therefore, its use runs contrary to the NEL and the NER. 
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First, in Table 3 below, we demonstrate how each company’s rank in the MPFP 
benchmarking assessment changes with different weights, when measured over 2006-2019. 

Table 3: MPFP Efficiency Ranks Under Alternative Weights 

  
EI 

Weights 
Model w 

Cons. 

Model w 
Time 

Trend 

Panel 
Fixed 

Effects 

Random 
Energy 

(5th) 

Random 
Energy 

(95th) 

Opex 
Models 

Only 

Cost 
Function 

Avg 
ACT 12 12 12 10 12 12 9 10 
AGD 13 13 13 11 13 13 11 11 
AND 6 8 9 9 7 10 10 9 
CIT 3 1 2 1 3 3 1 1 
END 10 6 5 8 10 6 6 8 
ENX 8 7 7 6 8 5 7 6 
ERG 9 9 8 13 6 9 12 13 
ESS 5 10 10 12 5 8 13 12 
JEN 11 11 11 5 11 11 8 5 
PCR 1 2 1 3 1 1 2 3 
SAP 2 3 3 4 2 2 3 4 
TND 4 4 4 7 4 4 5 7 
UED 7 5 6 2 9 7 4 2 

Source: NERA analysis 

While the differences are unlikely to change the AER’s conclusions about the relative 
efficiency of the most and least efficient DNSPs – CIT, PCR and SAP are among the top 
four, while ACT and AGD are in the bottom four, regardless of output weights – the rankings 
could influence the AER’s conclusions on the efficiency for companies in the middle. 

For instance, under different weights, ERG’s rank varies from 6th to 13th, ESS’s rank varies 
from 5th to 12th, JEN’s rank varies from 5th to 11th, and UED’s rank varies from 2nd to 9th.  
When considering whether a DNSP is among the top performing firms, these dramatically 
different rankings could plausibly be the difference between the AER deciding to accept the 
company’s opex proposal and not. 

Second, different MTFP output weights would yield different overall output weights for the 
output growth allowance.  We show these in Table 4 below, which already take into account 
the weights derived from the cost functions. 

Table 4: Average Output Weights Under Different MPFP Approaches 

Model Energy RM Demand Customers Length 
EI report 1.72% 25.11% 52.52% 20.66% 
w/ constant 2.17% 28.55% 50.29% 18.98% 
w/ time trend 1.99% 28.13% 50.19% 19.69% 
Fixed Effects 1.48% 36.18% 49.50% 12.83% 
Rand. Energy (5th) 1.66% 24.93% 52.30% 21.11% 
Rand. Energy (95th) 4.79% 24.21% 50.86% 20.14% 
Opex Models Only 3.37% 27.98% 51.94% 16.70% 
Cost Function Avg 0.00% 22.94% 61.02% 16.04% 

Source: NERA analysis 
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The differences in the average output weights compound annually.  Assuming that each 
company’s outputs grow at the same rate they did between 2015 and 2019, each DNSP’s total 
opex allowance varies by 0.6-1.3 per cent by the end of a hypothetical five-year reset.   

Given EI’s method for estimating them, the output weights selected by EI are arbitrary, and 
bear little resemblance to the true drivers of opex: even if the econometric specification were 
robust, the weights primarily capture the effect of outputs on OHL, UG and Transformers 
rather than opex.  Therefore, variation in companies’ opex allowances due to variation in 
these output weights is unlikely to reflect variations in efficient costs. 

Third, the choice of MTFP weights has a material impact on the AER’s appraisal of long-
term productivity trends of the top four most efficient companies.  The long-term average 
MPFP growth amongst these firms varies by 0.66-0.67 per cent, simply as a result of the 
choice of weights.  However, this is only one of several pieces of evidence on which the AER 
holistically relied to set a productivity target, so it is not possible to say whether the AER 
would have reached a different conclusion with different weights. 

Cost Functions in Place of MPFP Models 

As we describe throughout this report, the MPFP modelling is part of the AER and EI’s 
toolkit, and has become increasingly so in the last two to three years.  We therefore 
understand that it represents a methodological shift to discontinue its use, and that the AER 
may be hesitant to do so if it were to sacrifice analysis and evidence that it could appraise by 
no other means. 

However, the existing cost functions can be used in place of the MPFP model for each of the 
AER’s uses of it.  Indeed, relying on its cost functions and eliminating the MPFP model (at 
least as currently conducted) would improve the rigour of the AER’s determinations by 
eliminating essentially meaningless and arbitrary analysis. 

First, the AER uses the MPFP model as one of five benchmarking techniques to assess the 
efficiency of DNSPs’ opex over an extended historical window (e.g. 2006 to 2018 or 2012 to 
2018).  The AER could place more emphasis on its other efficiency assessment approaches 
by omitting the MPFP analysis from this part of the assessment. 

Second, the AER uses the MPFP model to assess companies’ year-on-year changes in 
efficiency.  Whilst EI has not set up the cost function models to present this level of detail, it 
is simple to do so in the form of a ratio of fitted opex to actual opex.   

To demonstrate, we carry out this analysis of the cost functions.  Figure 4 shows the annual 
efficiency scores from LSE-CD model – we show the equivalents for the other three cost 
models in the body of this report. 
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Figure 4: Annual Efficiency Scores - LSE CD 

  
Source: NERA analysis 

In these figures, we can see each firm’s efficiency relative to its peers on an annual basis, and 
also relative to itself in previous years. 

The data can also be modified to decompose the drivers of change to a company’s opex 
efficiency from one year to the next.  We demonstrate this in Figure 5 below, which 
decomposes changes to UED’s LSE-CD efficiency score from 2018-19 due to changes in 
output drivers and actual opex. 
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Figure 5: UED 2018-19 Changes in Opex Efficiency 

 
Source: NERA analysis 

Other uses of the MPFP model are even simpler to adapt to the cost functions: 

▪ Output growth weights: The AER could simply remove the MTFP weights from this 
calculation and place 25 per cent weight on the weights from each of the cost functions. 

▪ Productivity: The AER could simply place greater consideration on the other pieces of 
evidence and ignore the results of the MPFP model. 

Conclusions 

We have carried out a thorough review of EI’s Leontief modelling, the MPFP modelling 
based upon it, and the AER’s use of various components of EI’s outputs.  We find that EI’s 
method for deriving output weights is arbitrary, poorly justified, and highly likely to result in 
weights that are unrelated to drivers of efficient opex.   

The AER’s conclusions from its uses of the MPFP modelling are highly sensitive to the 
choice of output weights.  Therefore, the AER’s price control parameters which rely upon 
MPFP modelling are unlikely to reasonably reflect the efficient cost of providing distribution 
services, as is stipulated by the NER, or to allow companies a reasonable opportunity to 
recover efficient costs, as stipulated by the NEL.  Moreover, by using MPFP modelling as a 
supplement to other forms of modelling, the AER reduces weight on modelling techniques 
which may reflect the efficient costs of providing distribution services, and the final price 
control parameters are less likely to satisfy the opex criteria.   
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Therefore, the AER fails to satisfy the opex criteria of the NER as well as the RRP in the 
NEL by relying in part on the MPFP model.  The AER could better satisfy the opex criteria 
by placing no reliance on the MPFP model.
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1. Introduction 
As part of its periodic resets for Australia’s Distribution Network Service Providers (DNSPs), 
the Australian Energy Regulator (AER) performs regular benchmarking analysis of 
companies’ costs and outputs.  To do so, it relies on an annual benchmarking report from its 
consultants Economic Insights (EI) (EI Benchmarking Report). 

In the EI Benchmarking Report, EI carries out several analyses, including econometric 
operating expenditure (opex) cost function benchmarking (cost function) and multilateral 
partial factor productivity (MPFP) modelling.   

Each DNSP’s price control period lasts for five years, but timings of each control period are 
staggered by state.  In Victoria, for instance, the next price control period is scheduled to run 
from 1 July 2021 to 30 June 2026.  In forming its final determination for the Victorian 
DNSPs, we understand that the AER will rely on the results of the most recent EI 
Benchmarking Report, dated 25 August 2020, which has been provided to us by United 
Energy.14 

In keeping with its past use of the results of the MPFP modelling, we anticipate that the AER 
is minded to use MPFP modelling for three purposes in the draft determination: 

▪ Each company’s productivity level as measured by the MPFP model feeds into the AER’s 
overall assessment of DNSPs’ “base year” opex efficiency, alongside the opex 
benchmarking models;  

▪ The MPFP model relies on “output weights” as derived from a set of Leontief models to 
define a composite level of outputs.  The AER uses these weights to estimate the “trend” 
in DNSPs’ opex resulting from changes in DNSPs’ outputs within each reset period; and  

▪ The average change in industry-wide MPFP is one piece of evidence which the AER has 
relied upon recently to set a target for ongoing productivity growth and therefore to set 
the trend in efficient opex within each reset period.  

We have been commissioned by United Energy to review the mechanics of, and the AER’s 
reliance upon, the MPFP modelling in setting DNSPs’ opex allowances. 

This report proceeds as follows: 

▪ In Chapter 2, we set out the factual background to the remainder of the report, including a 
discussion of the AER’s statutory obligations, a technical description of the MPFP 
modelling and a detailed description of the AER’s reliance upon it. 

▪ In Chapter 3, we analyse each step of the MPFP modelling process, and appraise the 
AER’s reliance upon it against its statutory obligations.  

▪ In Chapter 4, we describe how the AER could use other modelling techniques for the 
same purposes that the AER currently uses the MPFP modelling.   

▪ In Chapter 5, we conclude. 

 
14  Economic Insights (25 August 2020), Econometric Benchmarking Results for the Australian Energy Regulator’s 2020 

DNSP Annual Benchmarking Report. 
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Overall, we find that the MPFP modelling is based on a set of arbitrary assumptions and 
methodological choices.  The resulting efficiency scores and output weights are therefore not 
a reasonable reflection of DNSPs’ relative outputs, inputs and efficiency levels.  Therefore, 
we recommend that the AER place no reliance upon the MPFP modelling in its opex 
assessment process.  Instead, the AER should place greater reliance upon the econometric 
cost functions, which do not suffer from the same deficiencies. 
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2. Background of MPFP Modelling in Australia 
As part of its suite of econometric models and benchmarking techniques, the AER has relied 
upon MPFP modelling carried out by EI since 2014.  EI first carried out an assessment of 
DNSPs’ relative efficiency as part of the 2014-19 price control decisions for DNSPs in New 
South Wales and ACT.15  Since 2017, EI has updated its analysis annually, with the 2020 EI 
Benchmarking report released in August 2020.   

Based primarily on the EI report, the AER also releases an annual benchmarking report (AER 
Benchmarking Report), with the most recent version released in November 2019.16  We 
understand that the 2020 version of the AER Benchmarking Report, based on the 2020 EI 
Benchmarking Report, will be released in November 2020.  We also understand that the 2020 
version of the AER Benchmarking Report will inform the final determinations for the DNSPs 
in Victoria. 

In this chapter, we set out the factual background to the use of MPFP modelling in Australia.  
In particular, we cover the following: 

▪ In Section 2.1, we provide a brief overview of electricity network regulation in Australia, 
including a discussion of the role and duties of the AER in regulating the electricity 
DNSPs; 

▪ In Section 2.2, we describe the uses of EI’s MPFP modelling as part of the price control 
process; 

▪ In Section 2.3, we set out the mechanics of the MPFP modelling, from the calculation of 
output weights to calculation of final price control parameters; and 

▪ In Section 2.4, we discuss recent developments in the use of MPFP modelling, including 
an ongoing methodological debate between NERA, EI and Frontier Economics. 

▪ In Section 2.5, we summarise and conclude. 

2.1. Network Regulation in Australia 

2.1.1. The role and responsibilities of the AER in regulating electricity 
networks are set out in the NEL and the NER 

The AER has been responsible for the economic regulation of electricity DNSPs of the 
National Electricity Market (NEM) – i.e. all of Australia except Northern Territory and 
Western Australia – since 1 January 2008, when the National Electricity Rules (NER) were 
amended to give that responsibility to the AER in place of jurisdictional regulators.17 

 
15  Economic Insights (17 November 2014), Economic Benchmarking Assessment of Operating Expenditure for NSW and 

ACT Electricity DNSPs. 
16  AER (November 2019), Annual Benchmarking Report – Electricity distribution network service providers. 
17  National Electricity Rules, v18, clause 6.1.1.   
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The NER is itself granted force of law by the National Electricity Law (NEL).18  The NEL 
and the NER together guide the AER’s regulation of electricity DNSPs, and set out the 
functions, responsibilities and powers of the AER.   

As we demonstrate in Chapter 3, the continued reliance upon the MPFP models does not 
comply with the AER’s responsibilities set out in the NEL and the NER the models do not 
capture DNSPs’ efficient costs or changes to DNSPs’ efficient costs.  Therefore, in relying 
upon these models, the AER makes it less likely that a company will have an opportunity to 
recover its efficient costs, which is not compliant with the AER’s responsibilities in the NEL 
or the NER. 

2.1.1.1. The National Electricity Law defines the principles of network 
regulation 

The goal of the NEL, set out in the National Electricity Objective, is:  

“… to promote efficient investment in, and efficient operation and use of, 
electricity services for the long term interests of consumers of electricity with 
respect to— 

(a) price, quality, safety, reliability and security of supply of electricity; and 

(b) the reliability, safety and security of the national electricity system.”19 

The Revenue and Pricing Principles (RPP) of the NEL further stipulate that a network service 
provider “should be provided with a reasonable opportunity to recover at least the efficient 
costs the operator incurs in (a) providing direct control network services; and (b) complying 
with a regulatory obligation or requirement or making a regulatory payment”.20 

According to the NEL, when performing a regulatory function or power, the “AER must […] 
perform or exercise that function or power in a manner that will or is likely to contribute to 
the achievement of the national electricity objective”.21  Furthermore, the AER “must take 
into account the revenue and pricing principles when exercising a discretion in making those 
parts of a distribution determination […] relating to direct control network services”.22  

2.1.1.2. The National Electricity Rules sets out the duties of the AER 

While the NEL sets out the AER’s statutory duties, the NER provides a more detailed 
framework that the AER is required to follow in meeting those requirements. 

The NER requires that a DNSP’s opex proposal must achieve the operating expenditure 
objectives (opex objectives), which are: to meet or manage expected demand; comply with all 

 
18  National Electricity (South Australia) Act 1996, Schedule – National Electricity Law 
19  National Electricity (South Australia), Act 1996, Schedule – National Electricity Law, Section 7. 
20  National Electricity (South Australia) Act 1996, Schedule – National Electricity Law, Section 7A(2). 
21  National Electricity (South Australia), Act 1996, Schedule – National Electricity Law, Section 16(1). 
22  National Electricity (South Australia), Act 1996, Schedule – National Electricity Law, Section 16(2). 
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regulatory obligations or requirements; maintain quality, reliability and security of supply; 
and maintain the safety of the distribution network.23 

The NER also defines the criteria against which the AER assesses whether a DNSP’s 
proposal achieves the operating expenditure objectives (the opex criteria):24  

“The AER must accept the forecast of required operating expenditure of a 
Distribution Network Service Provider that is included in a building block proposal if 
the AER is satisfied that the total of the forecasting operating expenditure for the 
regulatory control period reasonably reflects each of the following (the operating 
expenditure criteria): 

(1) the efficient costs of achieving the operating expenditure objectives: and 

(2) the costs that a prudent operator would require to achieve the operating 
expenditure objectives; and 

(3)  a realistic expectation of the demand forecast and cost inputs required to 
achieve the operating expenditure objectives.” 

If, having regard to the most recent AER Benchmarking Report (among several other 
factors), the AER is “satisfied that the total of the forecast operating expenditure for the 
regulatory control period reasonably reflects” the opex criteria, then the AER must accept the 
forecast.25  If it is not satisfied that the DNSP’s proposal satisfies the opex criteria, it must not 
accept the forecast and instead provide its own estimate of required opex that does 
“reasonably reflect” the opex criteria.26 

Additionally, under clause 6.12.2, when replacing a DNSP’s proposal with its own estimate, 
the AER must “set out the basis and rationale of the determination, including: (1) details of 
the qualitative and quantitative methods applied in any calculations and formulae made or 
used by the AER”.27 

2.2. The AER’s Approach to Setting Opex Allowances 

At each reset, the AER sets the level of efficient opex that each DNSP is allowed to recover 
for the subsequent five-year reset period.  The five-year reset periods are staggered by 
jurisdiction as to when they begin and end. 

Drawing on the requirements set out in the NER, the AER assesses whether the DNSP’s 
proposed opex satisfies the opex criteria.  If it finds that the DNSP’s proposed opex does not 
satisfy the opex criteria, it rejects the company’s proposal and replaces it with its own 
analysis. 

 
23  National Electricity Rules, v150, clause 6.5.6(a).   
24  National Electricity Rules, v150, clause 6.5.6(c).  Italics in original. 
25  National Electricity Rules, v150, clause 6.5.6(c)-(e).  Italics in original. 
26  National Electricity Rules, v150, clauses 6.5.6(d) & 6.12.1(4).   
27  National Electricity Rules, v150, clause 6.12.2.   
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The AER uses a “base-step-trend” approach to determining its view of efficient opex.  This 
approach defines base opex for a recent year, and then applies a yearly rate of change and 
step changes to set the overall level of allowed opex.28 

2.2.1. The base opex allowance defines a DNSP’s allowed opex before the 
beginning of the reset period 

To assess base opex, the AER evaluates the DNSP’s historical opex in a recent year, relying 
on the AER Benchmarking Report which compares opex efficiency across all 13 DNSPs in 
the NEM.29  In assessing the efficiency of the DNSP’s historical opex, the AER considers 
especially “its performance over time (using a period–average efficiency score from our 
econometric and opex multilateral partial factor productivity (MPFP) models).”30  In 
particular, these models comprise: 

▪ A Least Squares Econometrics (LSE) Cobb-Douglas (CD) econometric model, which 
estimates opex as a function of three output variables: ratcheted maximum demand (RM 
Demand), customer numbers (Customers), and network length (Length).  Additionally, 
this model includes the company’s share of underground lines, time, and a company-
specific “dummy” variable.  The dummy variable captures costs incurred by each 
company that is not explained by the assumed output variables, share of underground 
lines and time.  The AER estimates the efficiency of each company by comparing the 
level of the dummy variable for each company with the lowest dummy variable across the 
sample; 

▪ An LSE Translog (TLG) model, which differs from the LSE CD model in that it allows 
for a more complex relationship between the output variables (including squared and 
cross-product terms); 

▪ A Stochastic Frontier Analysis (SFA) CD model, which differs from the LSE CD model 
in that it estimates a stochastic company-specific inefficiency term rather than a dummy 
variable.  The model decomposes each company’s unexplained costs into random 
variation (which is normally distributed) and company-specific inefficiency (which is 
strictly non-negative);  

▪ An SFA TLG model, which combines the SFA estimation technique with the TLG 
functional form; and 

▪ The opex MPFP model, described further in Section 2.3.  In addition to the three output 
variables described above, this model also includes energy throughput (Energy) as an 
output variable. 

We refer to the first four models above collectively as the “cost functions”, which do not 
include the MPFP model.  In its 2020 draft determinations, the AER assesses the cost 
functions over a 2006-18 window as well as a 2012-18 window.  It assesses the MPFP model 
over the 2006-18 period. 

 
28  (1) AER (November 2013), Better Regulation – Expenditure Forecast Assessment Guideline for Electricity 

Distribution, p.22. 
29  See, e.g., AER (November 2019), Annual Benchmarking Report – Electricity distribution network service providers 
30  AER (September 2020), Draft Decision – Powercor, Distribution Determination 2021 to 2026, Attachment 6: Operating 

expenditure, p.6-23. 
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The AER uses these assessments to conclude whether each DNSP’s historical opex is 
efficient and hence whether it can accept the company’s base year opex level.   

For example, in its September 2020 draft determinations for DNSPs in Victoria, the AER 
concludes that “Powercor has consistently been amongst the better performers in our 
benchmarking results and that it has operated within the opex forecast set by us”, and it 
therefore accepted Powercor’s 2019 opex as its base year assumption.31   

For Jemena, by contrast, the AER finds that “[t]he results from our productivity index 
techniques [i.e. MPFP] and econometric opex cost function modelling indicate […] the 
presence of material inefficiency in Jemena's 2018 base year opex”.  Regarding the MPFP 
modelling in particular, the AER finds that “[i]n base year 2018, Jemena is placed equal last 
[…]. This is an indicator that Jemena's base year opex likely contains a material degree of 
inefficiency”.32  As a result, the AER adjusts Jemena’s 2018 opex based on its findings from 
the four econometric benchmarking models, assessed both from 2006-18 and 2012-18 
(excluding the SFA TLG model from the latter period due to insufficient data).33  

2.2.2. The rate of change allowance captures changes to opex pressures 
during a reset period 

The AER applies a rate of change to base opex to forecast yearly changes in opex in the 
subsequent regulatory period.  The rate of change is a percentage growth term to the base 
opex which reflects expected growth in efficient opex due to changes in output drivers, input 
prices and productivity. 

2.2.2.1. The output growth allowance captures changes in efficient opex 
due to changes in outputs delivered 

The output growth component of the rate of change reflects the forecast annual increase in 
the selected output variables (RM Demand, Customers, Length and Energy).  The AER 
estimates the impact on costs by multiplying the growth in each output by a corresponding 
weight for each output in operating costs. 

The AER calculates weights on each output by taking an unweighted average of measures of 
output weight from each of the five models described in Section 2.2.1 above: 

▪ For the four cost functions, the AER uses the three “first order”34 output coefficients 
estimated from 2006-18, scaled so each model’s coefficients sum to 1.00; and 

▪ For the MPFP model, the AER uses output weights on each of the four output variables 
included in that model (i.e. the three outputs included in the cost functions, plus Energy).  
EI estimated these output weights using the Leontief regression technique described in 
Section 2.3 below.  These are the same weights used for multilateral total factor 

 
31  AER (September 2020), Draft Decision – Powercor, Distribution Determination 2021 to 2026, Attachment 6: Operating 

expenditure, p.6-25. 
32  AER (September 2020), Draft Decision – Jemena, Distribution Determination 2021 to 2026, Attachment 6: Operating 

expenditure, p.6-36. 
33  AER (September 2020), Draft Decision – Jemena, Distribution Determination 2021 to 2026, Attachment 6: Operating 

expenditure, p.6-47. 
34  i.e. excluding the coefficients on the squared and cross-product terms in the TLG models. 
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productivity (MTFP), which considers productivity as well, so we refer to these weights 
as MTFP weights (as does EI). 

We list the AER’s preferred weights in Table 2.1 below. 

Table 2.1: AER's Preferred Output Weights 

  Energy RM Demand Customers Length 
MTFP 8.58% 33.76% 18.52% 39.14% 
LSE CD 0.00% 15.48% 68.95% 15.56% 
LSE TLG 0.00% 40.89% 37.95% 21.16% 
SFA CD 0.00% 17.50% 67.43% 15.08% 
SFA TLG 0.00% 17.90% 69.73% 12.37% 
Overall 1.72% 25.11% 52.52% 20.66% 

Source: EI35 

For each DNSP, the AER forecasts the percentage growth of each output in each year of the 
reset period, based on its assessment of company forecasts.  The AER then uses these weights 
to combine into a consolidated output growth rate and associated opex allowance. 

2.2.2.2. The input price growth allowance captures changes in efficient 
opex due to changes in input prices 

Each DNSP’s rate of change allowance includes a component which captures changes in 
input prices above the level of inflation, particularly labour costs.  This component of the 
allowance is not related to the use of the MPFP model and we do not describe it further. 

2.2.2.3. The productivity allowance captures changes in efficient opex due 
to changes in productivity 

Finally, the AER assumes that companies will achieve a 0.5 per cent annual reduction in 
efficient opex due to ongoing improvements in productivity.  This assumption itself comes 
from a holistic review of seven different pieces of evidence, the following three of which 
derive directly from the AER’s benchmarking techniques:36 

▪ Opex MPFP for the top four companies (CIT, PCR, SAP and UED) between 2011 and 
2017 shows annual productivity growth of 0.35, using a geometric mean (i.e. end-point to 
end-point) averaging technique, and 0.97 per cent, based on the slope of a linear 
regression on the natural logarithm of the MPFP levels in each year; 

▪ The time trends on the  cost functions show annual productivity growth of 1.2 – 2.2 per 
cent when estimated between 2011 and 2017; and 

▪ The econometric coefficient on the undergrounding variables, combined with an assumed 
continuation of undergrounding work, suggests annual opex cost reductions (i.e. 
productivity) of 0.1 – 1 per cent. 

 
35  Economic Insights (20 May 2020), Review of reports submitted by CitiPower, Powercor and United Energy on opex 

input price and output weights, Table 4. 
36  AER (March 2019), Final decision paper – Forecasting productivity growth for electricity distributors, Table 12. 
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The other four sources relate to other industries (gas and water) or countries. 

From the range of estimates assessed, the AER selects 0.5 per cent as a central estimate, 
though it does not derive mechanically from any combination of the different estimates. 

2.2.3. Step changes 

The AER accounts for the possibility of further modifications to opex forecasts whenever 
there are opex components that are not compensated for in the base opex or in the rate of 
change.  These step changes do not relate to MPFP modelling, so we do not discuss them 
further. 

2.3. Technical Description of MPFP Modelling 

In this section, we briefly summarise the mechanical approach that EI uses to calculate the 
MPFP models.  Broadly speaking, this comprises three steps: 

▪ EI calculates output weights based on a Leontief regression technique.  There are 52 
unique regression models, separately for 13 DNSPs multiplied by four input variables.  
The input variables comprise opex, OHL, UG and transformers.  EI refers to the latter 
three of these as “capital” inputs, and uses them as the inputs to measure “capital 
MPFP”37; 

▪ Based on the output weights, EI calculates an output index which measures the aggregate 
level of outputs delivered by DNSP and by year.  Dividing this index by an input index 
(opex in the case of the opex MPFP model or opex and capital inputs in the case of the 
MTFP model), EI calculates a productivity index by DNSP and by year.  The opex MPFP 
specifically shows opex productivity.  These indices can be aggregated across firms to 
show state-level or industry-level productivity (or any other aggregation of firms); 

▪ EI calculates the relative efficiency of DNSPs by comparing their productivity scores 
over an extended period of time. 

To aid in our interrogation of the results, we have replicated each of the above steps.  EI 
performs all of the steps in Shazam. We have estimated output weights using Stata and the 
remaining two steps in Microsoft Excel.  Our replications are virtually identical to those 
reported by EI, with the exception that our t-statistic values (which measure statistical 
significance) are sometimes higher and sometimes lower than EI’s.  The differences in the t-
statistics are only large when the t-statistics themselves are extremely large (e.g. 90 vs 60), 
and so do not influence our qualitative conclusions if we use either set. 

The discrepancy between t-statistics is likely due to differences in the maximisation 
algorithm employed by Shazam compared to Stata.  Maximum Likelihood Estimators, as 
must be used to estimate EI’s Leontief regressions, cannot be solved analytically.  Therefore 
any programme must rely on heuristic algorithms which come to slightly different results. 

Where these distinctions are relevant (i.e. when discussing statistical robustness of different 
model specifications), we report both EI’s values and our replications of them.  Where only 

 
37  See for example: Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy 

Regulator’s 2020 DNSP Annual Benchmarking Report, p.10. 
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the coefficients themselves are important, we use our replication, but the differences are 
negligible. 

We describe each of these steps in more detail in Appendix A. 

2.4. Recent Developments in AER’s MPFP Modelling 

The AER has relied upon MPFP modelling conducted by EI since its 2014 price control 
decision for DNSPs in New South Wales and ACT.38  In that decision, the AER used the 
MPFP model only as part of the base year efficiency assessment, alongside econometric opex 
cost function benchmarking models and simple partial performance indicators (e.g. opex per 
customer plotted against customer density).39   

The AER states that the MPFP model “has the advantage of producing robust results with 
small datasets”.  EI found that “the similarity in results despite the differing methods used 
and datasets used reinforces our confidence in the results”.40 

However, while it was used in assessing the efficiency of DNSPs’ submitted base year opex, 
it did not feed directly into the AER’s alternative base year opex estimates, which the AER 
substituted in place of DNSPs’ submissions:  The AER instead based its substituted value 
solely on the results of the SFA CD model.  In short, the MPFP model as originally 
introduced was used for a qualitative appraisal of efficiency.  The AER argued that it was 
valid because it showed relatively similar overall efficiency results as the econometric opex 
cost function benchmarking models (though the standard of similarity was not defined). 

2.4.1. The AER has recently started to place more weight on MPFP modelling 

Since its introduction in 2014, the AER has placed increasing weight on MPFP modelling in 
the overall price reset process.  The AER has not shared any additional analysis that would 
suggest that the MPFP modelling is sufficiently accurate to bear this additional burden.  One 
can see this expanded importance in three ways.   

First, as part of the base year opex assessment process, the AER has placed increasing 
importance on the results of the MPFP modelling in deciding whether the DNSP’s proposed 
base opex level is efficient.  In 2014, it used the MPFP modelling primarily as a cross-check 
to the opex benchmarking.  The AER did not carry out detailed analysis of the MPFP 
modelling beyond the average efficiency score it produces.41 

In the 2020 draft determinations for Victoria, by contrast, the AER now relies heavily on a 
the MPFP modelling to determine the efficiency of each company’s base year opex.  As 
described in Section 2.2.1, the AER cites the MPFP results in determining that Jemena’s 

 
38  Note: The final decisions for the 2014-19 price control period were released in 2015, after the period had already 

started.  We nonetheless refer to these decisions as 2014 decisions. 
39  AER (November 2014), Draft decision – Essential Energy distribution determination 2015–16 to 2018–19, Attachment 

7: Operating expenditure, p.7-30 - 7-31 
40  (1) AER (November 2014), Draft decision – Essential Energy distribution determination 2015–16 to 2018–19, 

Attachment 7: Operating expenditure, p.7-69; (2) Economic Insights (17 November 2014), Economic Benchmarking 
Assessment of Operating Expenditure for NSW and ACT Electricity DNSPs, p.46-47 

41  AER (April 2015), Final Decision –Essential Energy distribution determination 2015−16 to 2018−19, Attachment 7 – 
Operating expenditure, p.7-33. 
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proposed base year opex is inefficient on an individual-year basis.  Therefore, the AER is 
relying on not just the broad trend implied by the MPFP modelling or rank-ordering of 
comparators but relying on the accuracy of individual pairings of companies and years.   

Second, in 2014, the AER based the output weights used to inform the output growth 
assumption (part of the rate-of-change allowance) only on the coefficients of the SFA CD 
model. 

In its decisions for the 2019-24 reset periods in New South Wales, ACT and Tasmania, in 
response to the Consumer Challenge Panel 10 (CCP10) and the Australian Competition 
Tribunal (ACT), the AER expanded its approach to include coefficients from the other cost 
functions as well as the MTFP output weights.42  At the time, it did not consider the SFA 
TLG model to be sufficiently robust, so the output weights were based on the three other cost 
functions plus the MTFP weights. 

Finally, before 2019, the AER applied a productivity growth assumption of 0 per cent.  In 
2019,  the AER estimated that DNSPs could achieve 0.5 per cent productivity growth per 
year, informed in part by the MPFP modelling as described in Section 2.2.2.3. The AER first 
used its assumption on the level of productivity growth as part of the 2020-25 decisions for 
DNSPs in South Australia and Queensland 

2.4.2. Ongoing debate on the robustness of the MPFP models 

As a result of the AER’s recent increasing reliance on the MPFP modelling as described 
above, the models have been subject to greater scrutiny from DNSPs and their advisors, and 
EI has responded in turn.  We summarise the state of the debate thus far below. 

When the AER proposed expanding its output weight methodology to include the other  cost 
functions and the MTFP weights, we wrote a report appraising some of the proposed 
techniques.43  Our report covered other elements beyond the MTFP modelling (namely, the 
use of Energy as a cost driver and the interpretation of the TLG coefficients), but we 
summarise our findings relating to the MTFP models below: 

1. The process for deriving weights from the MPFP modelling was opaque; 
2. The drivers included in the MPFP modelling were chosen based on tariff structure, not by 

assessing their effect on DNSPs’ costs; 
3. The weights in the MPFP model are artificially constrained to be positive, masking 

possible misspecification of the model; and 
4. The MPFP weights are estimated with very little data, suggesting the weights are 

estimated imprecisely. 

 
42  AER (November 2018), Draft Decision – Essential Energy Distribution determination 2019–24, Attachment 6 – 

Operating expenditure, p.6-28 – 6-29. 
43  NERA (18 December 2018), Review of AER’s Proposed Output Weightings – Prepared for CitiPower, Powercor, 

United Energy and SA Power Networks. 
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At the request of the AER, EI responded directly to our criticisms, concluding overall that its 
approach remained sound.44  We summarise EI’s arguments regarding MPFP modelling 
below, along with our reactions to each of those arguments: 

1. Transparency: EI claims it has demonstrated “near unprecedented” levels of transparency 
by providing the input and output code from its Shazam modelling.45  While it is true that 
its results are replicable from the input and output code, the code itself is poorly annotated 
and requires some knowledge of Shazam syntax to find the relevant terms.46  It is an 
exaggeration to suggest that this level of transparency is “near unprecedented”.  In similar 
regulatory proceedings in the energy and water sectors in Great Britain, for example, 
Ofgem and Ofwat routinely publish modelling files which are much easier to interrogate.   

2. Billed vs functional outputs: With respect to our claim that the choice of output weights 
derives at least in part from output variables which are “billed” (particularly Energy), EI 
states that “nothing could be further from the truth”.  In attempting to rebut our argument, 
EI states that one reason for including Energy as an output variable is that it “is what 
consumers see directly and pay for.  […] In other words, energy throughput scores highly 
on the second selection criterion”.47  While EI cites other justifications for using Energy 
as an output variable, one of them does relate to the fact that customers pay for it directly 
in their bills.  Hence, it is a billed output and this influences EI’s decision to include it.  
Therefore, in spite of EI’s claims to the contrary, many things could be, and in fact are, 
“further from the truth”.  We do not list them exhaustively below for reasons of brevity.  
  

3. Negative output weights: EI emphasises that, the coefficients are forced to be non-
negative in individual Leontief regressions, but would not provide a positive value if the 
estimated relationship were negative (and would instead find a value of 0).  We agree 
with this claim.  However, as discussed in Section 3.2.1, the process of aggregating 
coefficients into output weights across multiple regressions still does put positive weight 
on output variables, even if the relationship between outputs and costs is non-existent in 
reality.  EI also states that it has never estimated these equations without using squared 
coefficients. The fact that it has not changed this approach does not make it correct. 

5. Precision of estimates: EI claims that:  
A. It improves the precision of its estimates through aggregating across 52 regressions.  

We explain that this is not a valid claim in Sections 3.1 and 3.2 below. 
B. Its output shares are corroborated by the results of a translog opex model estimated 

across all four outputs.  EI only provides half a page in an appendix of its 2018 
benchmarking report describing its translog specification, but does not present the 
output or any interpretation as to how the output corroborates the MPFP weights.48  
We assume the raw output is in published Shazam code somewhere, but cannot we 

 
44  Economic Insights (30 April 2019), Review of NERA report on output weights.  
45  Economic Insights (30 April 2019), Review of NERA report on output weights, p.3. 
46  Although it was among the first econometric software packages when it was launched in 1977, Shazam is not among 

the more commonly used packages today, with econometricians generally preferring to use R, Stata, SAS or SPSS. 
47  Economic Insights (30 April 2019), Review of NERA report on output weights, p.6. 
48  Economic Insights (9 November 2018), Economic Benchmarking Results for the Australian Energy Regulator’s 2018 

DNSP Annual Benchmarking Report, p.110. 
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have not appraised whether it corroborates the MPFP weights or not, nor has EI 
explained how it does.  

C. It has increased its sample size by around 50 per cent from when it first estimated its 
output weights.  The current Leontief models using 13 years’ data (or 12 at the time of 
EI’s response) are insufficient to yield precise estimates (see discussion in Section 3.1 
below).  EI’s original Leontief models had only eight years of data, which is even less 
adequate for estimating five coefficients. 

In December 2019, Frontier Economics (Frontier) reviewed our 2018 Outputs report as well 
as EI’s response to it.  It concluded that “the AER should discontinue its reliance on the 
Leontief model in the setting of opex allowances”, based on statistical problems “so severe 
that they cannot be overcome by taking weighted averages”.49 

Frontier also identified a coding error in EI’s Leontief regression commands.  Whereas EI 
had intended for the time variable to be equal to 0 in 2006 (1 in 2007, etc) for all DNSPs, it 
failed to reset for subsequent DNSPs.  Therefore, for the second DNSP in the set, time in 
2006 equalled 12, and 13 in 2007, etc, while for the third DNSP, time in 2006 equalled 24. 

EI responded to Frontier’s criticisms in a memo to the AER in April 2020.  In short, it 
corrected the coding error that Frontier identified.  It argued that as a result, many of 
Frontier’s criticisms of the statistical robustness of the Leontief modelling were thus 
mitigated, namely that many more of the coefficients were statistically significant and 
intuitive.50  It concluded that “there is no case for not including the MTFP/MPFP weights in 
the output growth component in applications of the rate of change formula”.51  As we explain 
in Section 3.1, numerous other statistical failings continue to exist in the Leontief models, 
which present a strong case for not including the MPFP model in the AER’s suite of cost 
assessment methods. 

In its 2020 Benchmarking Report, having corrected this coding error, EI lists its 52 updated 
Leontief regression results.  It finds that “28 of the 52 regressions now have one significant 
output coefficient, 17 have two significant output coefficients and 2 have 3 significant output 
coefficients”, or, put another way, 47 of 52 with at least one significant output variable.52  It 
treats this as evidence that the Leontief models are robust.  As we discuss, in Chapter 3, this 
high proportion of models with at least one statistically significant variable is a virtual 
certainty based on how the models are specified (having corrected the coding error), rather 
than any indication that the output variables are actually correlated with costs:  One can 
obtain similar degrees of significance using randomly-generated series that have no 
underlying relationship whatsoever to costs. 

 
49  Frontier Economics (5 December 2019), Review of Econometric Models Used by the AER to Estimate Output Growth 

– A report prepared for CitiPower, Powercor and United Energy, p.1-2. 
50  Economic Insights (18 May 2020), Review of reports submitted by CitiPower, Powercor and United Energy on opex 

input price and output weights, p.16-17. 
51  Economic Insights (18 May 2020), Review of reports submitted by CitiPower, Powercor and United Energy on opex 

input price and output weights, p.17. 
52  Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy Regulator’s  

2020 DNSP Annual Benchmarking Report, p.129 
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2.5. Summary and Conclusion 

As described in Section 2.2, the MPFP model (and the wider MTFP model) serves several 
roles in the price control determination process.  To summarise: 

▪ The AER uses long-term average MPFP benchmarking results directly when assessing 
whether a company’s base year opex proposal is efficient.  It does not directly use the 
MPFP model in calculating its alternative base year estimate, but a company’s 
performance in the MPFP model influences whether the AER accepts or instead replaces 
the company’s base year proposal.   

▪ The AER uses the MTFP output weights directly to calculate the output growth 
component of the rate of change allowance. 

▪ The AER uses a variation on the MPFP modelling (i.e. the rate of change of four 
companies over the period from 2011 to 2017) as one piece of evidence in setting the 
productivity growth assumption.  While the productivity assumption is not mechanically 
linked to any one piece of evidence, each piece of evidence influences the AER’s holistic 
view. 

Additionally, the AER uses companies’ annual MPFP performance to assess qualitatively 
whether a company’s efficiency improves or worsens over a period of time and to set the 
base-year opex at resets.  For example, in deciding to perform an adjustment to the opex 
allowance in the base year for a recent price control adjustment for Jemena, the AER cites 
that its productivity in 2018 specifically is jointly last in the industry and therefore a 
reduction in base opex was proportionate. 

When the AER has other occasions to consider a company’s efficiency or productivity (or for 
a state or an industry) beyond those described above, it tends to refer first to the MPFP 
model.  Indeed, in its 2019 Benchmarking report, the AER states that its primary 
benchmarking techniques to “measure the relative productivity of each DNSP in the NEM are 
multilateral total factor productivity (MTFP) and multilateral partial factor productivity 
(MPFP)”.53 

For the reasons stated above, we therefore conclude that the MPFP model is an important 
determinant of a company’s opex allowance, and, therefore, is important to determining 
whether the AER’s decision meets the opex criteria in any opex determination. 

In appraising the MPFP model, as we do in Chapter 3, we therefore consider: (i) whether the 
MPFP model and the AER’s various uses of it reasonably reflect the efficient costs of 
providing distribution services (i.e. meeting the opex objective); (ii) whether they represent a 
“realistic expectation of the […] cost inputs required to achieve” the opex objectives (as set 
out in the opex criteria); and (iii) whether they provide DNSPs with “a reasonable 
opportunity to recover at least the efficient costs” or providing distribution services (as set out 
the Revenue and Pricing Principles of the NEL).54 

  

 
53  AER (November 2019), Annual Benchmarking Report – Electricity distribution network service providers, p.1. 
54  (i) National Electricity Rules, v150, clause 6.5.6(c); and (ii) National Electricity (South Australia) Act 1996, Schedule – 

National Electricity Law, Section 7A(2). 
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3. Appraisal of MPFP Modelling 
In this chapter, we consider in detail whether the MPFP modelling is robust.  Specifically, we 
demonstrate that the MPFP modelling and the AER’s uses of it do not reasonably reflect the 
efficient costs of meeting the opex objective as set out in Section 2.1.1.  Neither does reliance 
on the MPFP modelling allow the AER to determine an opex allowance which represents a 
“realistic expectation of the […] cost inputs required to achieve” the opex objectives.  We 
focus especially on the process of calculating output weights, but also consider the wider 
implications of the MPFP approach as part of other components of the benchmarking process. 

This chapter proceeds as follows: 

▪ Section 3.1 discusses econometric shortcomings of the Leontief regressions which 
underpin the calculation of the weights; 

▪ Section 3.2 discusses shortcomings in how EI combines the regression results into output 
weights; 

▪ Section 3.3 discusses the implications of the shortcomings of the output weight 
calculations in terms of the final MPFP results as well as the price control parameters that 
derive from them; and 

▪ Section 3.4 appraises the MPFP modelling against the Opex criteria set out in the NER. 

3.1. Assessment of the Leontief Econometric Models 

As described in Section 2.3, the MPFP output weights are based on an aggregation of 52 
Leontief regressions.  Each equation estimates the level of one input in one company as the 
function of four output levels and time.  With only 13 data points per regression and five 
estimated coefficients, that leaves only eight degrees of freedom over which EI can estimate 
the relationships.  

The regression specification is:  

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �1 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

where 𝑖𝑖 indexes the input (one per regression); 𝑓𝑓 indexes the firm (one per regression); and 𝑡𝑡 
indexes time (13 years).  The level of the input at time 𝑡𝑡 is 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 and the level of output 1 at 
time 𝑡𝑡 is 𝑦𝑦1𝑓𝑓𝑓𝑓 (outputs 2-4 are analogous).  The output coefficients are 𝑎𝑎𝑖𝑖𝑖𝑖12  through 𝑎𝑎𝑖𝑖𝑖𝑖42 , 
which capture the contribution of the relevant output to input demand.  The squares on the 
coefficients mean the contribution is forced to be positive (whether a is positive or negative, 
a2 is always positive).  The time coefficient 𝑏𝑏𝑖𝑖𝑖𝑖 captures how the relationship between the 
input and output changes over time.  EI runs 52 regressions of this form.  

EI constructs the output weights using the output coefficients estimated from these 
regressions.  There are so many problems with the regressions that the output coefficients 
estimated from them are not at all reliable, so the resulting output weights are also not at all 
reliable. 
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In the first part of this section, we explain several of the problems with EI’s Leontief 
regressions.  We list the problems here and then explain them in detail in sections 3.1.1 to 
3.1.4.  

1. We have not found evidence of widespread use of these Leontief regressions.  In fact, the 
only place we have seen them used is in EI’s reports.  We are therefore concerned about 
the reliability of these models, as they have several non-standard features which have not 
been independently evaluated.  

2. The regression models do not have a constant.  It is textbook standard to include a 
constant in a regression model.55  Without a constant, the coefficients on outputs will be 
biased. 

3. The treatment of time in the regressions makes no sense.  Time is multiplied by the 
outputs rather than added to them.  This creates two problems.  First, the estimated 
coefficients on time and outputs depend on whether time is counted from 0 to 12 or from 
2006 to 2013 beyond just the scaling factor, which should not be the case.  Second, the 
coefficients on outputs will be biased, because there are added effects of time which have 
been missed. 

4. 80 per cent of the estimated output coefficients are statistically indistinguishable from 
zero, meaning that there is no evidence for a relationship between the output and the 
input.  By EI’s own calculations, 66 per cent of the coefficients EI estimates are 
statistically indistinguishable from zero.  This is already poor, but EI’s evaluation of does 
not account for the fact that when they estimate 208 coefficients, some will be different 
from zero just by chance.  Using a more appropriate evaluation we find that 80 per cent of 
coefficients are statistically indistinguishable from zero.  

In the second part of this section, we show that if we use alternative regression models which 
resolve some of these problems, the estimated output coefficients change.  This means the 
output weights also change.  The changes can be substantial: circuit length goes from having 
the highest output weight in EI’s model to having zero output weight in one of the models we 
consider.  We consider four models in total. 

The first two models we consider are a model with a constant and a model with a time trend.  
These models improve on problems (2) and (3) above, and result in a substantial reduction in 
the output weight for customer numbers.  However, they still suffer from problem (4): most 
of the coefficients are statistically indistinguishable from zero. 

The third is a model with a log-log specification, rather than a specification in levels.  Using 
logs rather than levels is in line with standard benchmarking techniques, such as econometric 
cost functions.  Unfortunately, the algorithm used to estimate the Leontief regressions does 
not converge for almost half of these models, meaning that coefficient estimates cannot be 
generated.  We attribute this to the small sample size.  

The fourth model is a fixed effects panel model.  This combines data on all DNSPs and 
estimates a single set of output coefficients for each input.  This model overcomes the 

 
55  Davidson, R and McKinnon, J. (1993) Estimation and Inference in Econometrics. Oxford University Press. [Section 

2.5] 



   Appraisal of MPFP Modelling 

  
 

 

© NERA Economic Consulting  17 
 
 

 

problem of having too few observations to estimate the model, but still suffers from problem 
(3) because it uses EI’s specification for time.  This model places zero weight on circuit 
length, putting most of the weight on ratcheted maximum demand. 

The point of this exercise is not to advocate for any one of the alternative regression models, 
as none of them resolves all the problems we identify with EI’s Leontief regressions.  Rather, 
the point is that to show this MPFP approach is very sensitive to the underlying regression 
specification.   

Since the MPFP approach is very sensitive to the underlying regression specification, we 
should be confident that whatever specification produces reliable coefficient estimates.  The 
various problems we have identified with EI’s Leontief regression mean that we have no 
confidence in the coefficients estimated from those regressions. It is not reasonable to use 
these coefficients as the basis for MPFP calculations (or anything else).   

3.1.1. There is no evidence for widespread use of this econometric model 

There is no evidence for the use of this econometric model outside of reports produced by EI. 
The econometric model used is not standard in several respects.   

First, the coefficients in the model are forced to be positive.  This is done by specifying the 
coefficients as squares, e.g. a2.  Whether a is positive or negative, a2 will always be positive.  

Second, time is multiplied by the output variables, rather than added to them.  Adding time to 
the model is the more standard approach.  When time is multiplied by the output variables in 
this way, it acts to modify the relationship between the inputs and the outputs, rather than 
directly affecting the inputs.  The problems created by doing this are described in Section 
3.1.3.  

Third, the way in which time modifies the effects of output variables is non-standard: rather 
than a set of interaction terms, the modification is assumed to be the same for all output 
variables. 

When using a non-standard model, it is conventional to either carefully explain its behaviour, 
or refer to literature that does so.   

EI does not explain the behaviour of the model.  The only external reference it gives for the 
model is a 2003 report by Dr Denis Lawrence for the New Zealand Commerce Commission, 
but Dr Lawrence is also the lead author of EI’s econometric work for the AER and hence 
does not represent an independent view from EI itself.56  The 2003 report also provides no 
explanation of the econometric model, and instead refers to explanations in an earlier draft of 
it, which we could not find online.  We also could not find literature explaining the behaviour 
of this non-standard econometric model either on EI’s website or using standard search 
engines.  Neither could we readily find evidence of it peer-reviewed journals.   

 
56  Lawrence, D. (2003), Regulation of Electricity Lines Businesses, Analysis of Lines Business Performance – 1996–

2003, Report prepared by Meyrick and Associates for the New Zealand Commerce Commission, Canberra, 19 
December. 
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Even if EI were to identify a handful of references produced by external parties for its model 
to justify a model otherwise apparently of its own invention, that this model specification is 
so rarely-used raises questions about its reliability.  The model may not have been carefully 
examined or subjected to rigorous testing.  Therefore, we do not know what properties the 
estimated coefficients from the model will have, if the functional form of the model does not 
perfectly describe the real relationships between inputs and outputs.  We do not know how 
badly biased the estimated coefficients will be.   

To take one example, it is generally known that if we forced the coefficient on an output to be 
zero when it is not zero, then the coefficients on other outputs would be biased.  This is called 
“omitted variable bias” and it can be quantified. 57 In the case of this model, if the true 
coefficients of the statistical relationship between inputs and outputs are not positive (as may 
be the case between, say, Energy, and the inputs costs), the estimates of other coefficients 
will also be biased.   

Since EI has not provided any supporting evidence to explain its non-standard model, these 
concerns remain unaddressed. EI provides no independent evidence or testing of its assumed 
functional form which would afford any confidence in its specification or results.  

3.1.2. The absence of an intercept term essentially guarantees that a 
regression will have at least one statistically significant output 
coefficient 

The regression model does not have an intercept term, which means that estimated 
coefficients on the outputs are badly biased and are effectively forced to be significant.   

The issue is a very simple one.  In applied problems, it is the textbook standard to include an 
intercept.58  This is because the mean value of the residual part of the input on the left-hand 
side of the regression may be different from zero.  The residual part is the part not explained 
by the outputs on the right-hand side of the regression.  The non-zero mean of the residual is 
the effect of other factors that influence the input but are not included in the model.  The 
intercept coefficient picks this effect up. 

If an intercept is not included in the model, the four outputs included in the right-hand side of 
the regression also pick up the effects of these factors not included in the model.  This has 
two negative consequences.  

First, the estimated coefficients on the outputs are biased: the estimates do not reflect the true 
contribution of the output to the input.  Instead, they reflect a combination of the output and 
the other unmodelled factors. 

Second, the estimated coefficients will be falsely reported as significant.  This is because the 
coefficients must pick up the obvious feature of the input, that its mean is large compared to 
its variability around the mean.  The resulting significant coefficient thus mainly tells us that 

 
57  Camero, A. and Trivedi, P. (2005) Microeconometrics: Methods and Applications. Cambridge University Press. 

[Section 4.7.4] 
58  Davidson, R and McKinnon, J. (1993) Estimation and Inference in Econometrics. Oxford University Press. [Section 

2.5] 
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both the input and the output have relatively large means compared to their variation around 
those means, rather than that the variation is in any way related.  

The lack of intercept term also means that the cost function is assumed to have constant 
returns to scale.  This is fundamentally implausible for an electricity network, which has high 
fixed costs.  The opex required for a small electricity network is likely to be larger than for a 
large network due economies of scale.  An intercept is necessary to capture that initial opex 
requirement.  If the constant is not included, the coefficient on the outputs will be biased 
upwards.  

To address this problem, EI should include intercepts in its regressions or de-mean all 
variables.59  It is surprising that EI does not already do this, given that it does include an 
intercept and de-mean all variables in its econometric opex cost function benchmarking 
models.  The inclusion of an intercept is standard practice in regulatory benchmarking60 

For example, compare the analysis of the relationship between Customers and OHL for UED 
with and without an intercept.  In EI’s original regression without an intercept, the coefficient 
on Customers is significant, and the predicted mean value of OHL based on Customers alone 
is 81,598 MVAkms.  This is close to the true mean value of OHL for UED: 94,897 
MVAkms.   

We conducted an alternative regression with an intercept (see Table B39 in the Appendix). In 
our revised specification, the coefficient on Customers is not significant.  The predicted value 
of OHL based on the intercept alone is 79,570 MVAkms.  Meanwhile, the predicted 
contribution of Customers to OHL is 0 MVAkms.  When we add a constant to EI’s original 
analysis, we find that only 52 of 208 output coefficients are significant, reduced from EI’s 68.   

A model without an intercept is effectively guaranteed to produce a large, statistically 
significant coefficient on at least one output variable.   Before we add a constant to the 
model, 47 of the regressions have at least one significant output coefficient.61  Of the five that 
did not have any statistically significant output variables, this is because the model used 
multiple output variables to proxy for the coefficient, each with enough uncertainty 
individually to be statistically insignificant.  However, a simple test for joint statistical 
significance indicates a very high level of joint significance, as is virtually guaranteed by the 
model specification.62 

After adding a constant, 38 regressions have at least one significant output coefficient.   

The above analysis of the importance of an intercept can also explain why EI found more 
significant coefficients after correcting the coding error identified by Frontier Economics.63  

 
59  De-meaning a variable involves calculating the mean level of that variable within the sample (i.e. for all years of a 

single DNSP), and subtracting the mean from each observation.  This achieves a similar level effect as introducing an 
intercept term. 

60  E.g. All econometric models relied upon by energy and water regulators Great Britain and Northern Ireland include a 
constant term. 

61  The five which have no significant coefficients are: opex for ACT, ERG, and PCT; OH for JEN; and UG for ESS.  
62  We performed a Wald test of joint significance.  The p-values of these tests were all numerically equivalent to zero, 

indicating that the output coefficients were jointly highly significant. 
63  Frontier Economics (5 December 2019), Review of Econometric Models Used by the AER to Estimate Output Growth 

– A report prepared for CitiPower, Powercor and United Energy, p.1-2. 
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With the original coding error in place, some DNSPs had values for time ranging between 
e.g. 100 and 112, rather than 0 and 12.  In the models for these DNSPs, the fact that time had 
a large positive average value meant that the time coefficient could act as a constant, and so 
fewer output coefficients were significant.  Once the coding error was corrected, time could 
no longer act as a constant, so more output coefficients became significant.   

3.1.3. Relationships are only significant due to time trends 

EI does not account for time trends in the inputs and outputs.  Time trends are a particular 
feature of time series data, that is, data recorded on a single entity (here DNSP) over multiple 
time periods.  When time trends are not accounted for, the estimated coefficients will be 
biased and their significance of coefficients will be overstated. 

In regressions using time series data, time trends are accounted for by either including time as 
an explanatory variable on the right-hand side or de-trending the data in advance.  In this 
respect, including a time trend is similar to including an intercept, discussed in Section 0.  

EI does include time on the right-hand side of the regression, but it is multiplied by the output 
coefficients rather than added to them.  This means that EI allows time to modify the 
relationship between inputs and outputs, but does not allow time to directly affect inputs.   

This creates a problem very similar to the problem caused by omitting the intercept.  There 
may be factors not included in the model which are increasing over time, and directly affect 
the input variable rather than modifying the relationship between the inputs and outputs.  In 
EI’s regression model, the effects of these factors will be picked up by the output 
coefficients.  This means that the estimated output coefficients will be biased: they will 
combine the effect of the output, and the effect of the unmodelled time-trending factors.  
These coefficients will be falsely reported as significant.  

To understand the problem, consider the relationship between Length and transformers for 
SA Power Networks (SAP) (see Figure 3.1).  Both variables trend up over time.  This means 
that a statistical test of the relationship between the two will produce a significant result.  The 
t-value for the coefficient on Length in the model for transformers reported by EI is 5.43.  
This statistically significant result is obtained because both variables are related to time; it 
does not say anything about the relationship between the two variables.   

Using an alternative regression where time enters as an explanatory variable rather than as a 
modifier, the t-value for the coefficient on Length in the model for transformers is 0.013.  
The t-value for the coefficient on time is 11.24, i.e. highly significant.  This is evidence that 
the significant relationship detected by the original model was a false relationship. 
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Figure 3.1: SAP circuit length and transformers are time trending 

 

Source: NERA analysis 

Therefore, the results of the Leontief model are not robust because EI does not include time 
as an explanatory variable and therefore captures the effects of time within the output 
coefficients.  

3.1.4. Over one-third of the coefficients EI reports as significant are not 
actually significant 

EI reports the number of significant coefficients across the 52 models as evidence of the 
robustness of its models.  They find that 68 of 208 of all output coefficients are significant, 
i.e. 33 per cent.  However, EI have used the wrong standard to evaluate significance.  Using a 
corrected standard, we find that only 41 of their coefficients are significant.  

EI use the 5 per cent standard of statistical significance.  The idea of this standard is to have 
only a 5 per cent probability that the test reports a significant relationship “by chance".  When 
estimating many coefficients, then, 5 per cent of them will be significant “by chance”. EI 
estimates a total of 208 output coefficients across all regressions.  Using the standard 5 per 
cent significance level, 10-11 of those coefficients will be significant by chance.64   

The Bonferroni correction is a technique that is used to adjust the standard of significance 
tests when estimating many coefficients.   Instead of considering each coefficient test 
separately and allowing a 5 per cent probability that the test reports a significant relationship 

 
64 i.e. 208 x 0.05. 
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“by chance”, it considers all coefficient tests together and allows a 5 per cent probability that 
any one test reports a significant relationship “by chance”.65   

Typically, we use a p-value of 0.05 to test at the 5 per cent standard level. To find the 
Bonferroni-corrected p-value, we divide 0.05 by the number of coefficients estimated, i.e. 
260 (208 output coefficients plus 52 time coefficients).66  The Bonferroni-corrected p-value 
is thus .0002.  Given this p-value, we calculate the critical value which the t-statistics on EI’s 
estimated coefficients must exceed to be considered significant.  This critical value is 6.44.67 

Using the Bonferroni correction, we find that 41 of 208 estimated output coefficients are 
significant (i.e. 20 per cent, a reduction of 13 percentage points), and 22 of 52 time 
coefficients are significant (i.e. 42 per cent, a reduction of 33 percentage points).  We 
demonstrate this in Figure 3.2 below. 

The reverse implication should be noted: 80 per cent of the estimated output coefficients are 
insignificant.  That means that the MPFP output weights are based on estimated coefficients 
which, 80 per cent of the time, are statistically indistinguishable from zero.  

These levels of significance ignore uncertainty over the functional form.  In other words, 
these coefficients will be significant by chance assuming that the underlying model is true.  In 
practice, given the weak justification for the functional form estimated, the reliability of EI’s 
estimates is far worse than these measures of statistical significance would suggest. 

 
65  Formally, the Bonferroni-corrected p-value is derived via a linear Taylor approximation of the relationship 

 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 − �1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
𝑁𝑁. Here 𝑁𝑁 is the number of coefficients to be tested, 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the overall p-value desired 

(here 0.05), and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎  is the adjusted p-value against which each coefficient should be evaluated to achieve 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The 
relationship relies on an assumption of independence between statistical tests.  

66  Romano J.P., Shaikh A.M., Wolf M. (2010) Multiple Testing. In: Palgrave Macmillan (eds) The New Palgrave 
Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95121-5_2914-1  

67  Based on a Student-t distribution with 8 degrees of freedom.  Given the small sample size, the Student-t distribution is 
more appropriate than the standard normal distribution used by EI.   
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Figure 3.2: Few coefficients are statistically different from zero using Bonferroni 

 
Source: NERA analysis  

3.1.5. Alternative regression models yield different statistical results 

We replicate EI’s specification with four alternative models: a model based on natural 
logarithms (i.e. a log-log model), a model with a constant, a model with a time trend, and a 
fixed effects panel model.  We describe each of these in turn in sections 3.1.5.1 to 3.1.5.4 
below.  To restate, EI’s Leontief specification is as follows: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �1 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑓𝑓32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

Each model has characteristics which are preferable to the specification chosen by EI in at 
least one dimension and are at least as reasonable or a more reasonable specification of the 
underlying relationships.  Our analysis shows that EI’s results are not robust to these changes 
in functional form and the significant coefficients that EI identifies turn out to be insignificant 
for minor changes in the specification.  In other words, EI’s results are not robust and are an 
artifice of the specific (and unjustified) relationship it models.  

3.1.5.1. Model in natural logarithms 

Our first alternative model is a model based on natural logarithms.  This model replaces the 
variables in levels, {𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦1𝑓𝑓𝑓𝑓 , … , 𝑦𝑦4𝑓𝑓𝑓𝑓}, from the above model with the natural logarithm of 
each variable (i.e. a log-log model).   

The log-log specification is a more realistic representation of the demand function, because it 
captures the interdependence of the various input-output conversion processes.  The log-log 
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specification is therefore the standard in regulatory benchmarking models.  For example, EI 
uses log-log specification in its econometric opex cost function benchmarking models.   

EI’s specification in levels implies a Leontief, or additive, demand function.  This means that 
demand for an input, e.g. opex, will increase linearly with an output, e.g. energy throughput, 
even if none of the other outputs are growing.  In practice this is unrealistic: the rate increase 
in demand for opex as energy throughput increases is likely to depend on whether other 
outputs are also growing.  The log-log model that we use implies a Cobb-Douglas demand 
function which captures this interdependence. 

Using the model in logs, the results in terms of statistical significance of the coefficients 
differ substantially from those using EI’s original additive model.  This can be seen from 
Figure 3.3: the blue columns represent the proportion of coefficients reported significant in 
EI’s original model, while the grey columns represent the proportion of coefficients reported 
significant in the log specification. 

We find that in the log specification, the coefficients on time and customer numbers are more 
frequently significant, while those on energy, demand, and length are less frequently 
significant.  The most substantial change is that the increase in the proportion of coefficients 
on customer numbers which are significant.  This is primarily driven by the regressions for 
transformers and overhead lines. 

It was not possible to estimate all 52 regression models in logs – only 28 models were 
estimated.68  For the remaining regressions, the maximum likelihood algorithm did not 
converge.  It is likely that this is due to the small sample size of each regression.  However, 
this does not imply that EI’s specification is preferable, but rather that there is insufficient 
data to carry out these regressions robustly. 

3.1.5.2. Model with a constant 

Our second alternative model adds a constant to EI’s original model.  This has two 
advantages as described in Section 0.  First, it avoids the problem of bias and artificial 
significance in output coefficients, arising because both the outputs and inputs have large 
positive coefficients.  Second, it is a more realistic representation of the demand function for 
this industry. 

The model is specified as follows: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = �1 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎𝑖𝑖𝑖𝑖02 + 𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

Here everything is exactly as an EI’s model, except for the addition of the constant term, 
𝑎𝑎𝑖𝑖𝑖𝑖02 .  This term is constrained to be positive to ensure comparability with the output 
coefficient estimates.  The addition of a constant term reduces the degrees of freedom of the 
regression by one. 

Using this model with a constant, the results are again quite different to those using EI’s 
original model.  In Figure 3.3, results from EI’s original model are in blue while results from 
the model with a constant are in orange.  A lower percentage of the coefficients on Energy, 
RM Demand, Customers, and Length are significant.  Nearly 20 per cent of estimates for the 

 
68  The breakdown is: 11/13 opex models, 7/13 OH models, 5/13 UG models, 5/13 Transformer models 
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constant term are significant, which is more than the 16 per cent of Energy coefficients or 12 
per cent of Customers coefficients.  This indicates that the constant term is at least as 
important in explaining input demand as energy and customer numbers.  

Despite the loss of degrees of freedom, it was possible to estimate 50 of the 52 regressions.  
For the other two regressions, the maximum likelihood algorithm did not converge.69  

3.1.5.3. Model with a time trend 

Our third alternative model changes the treatment of time.  As outlined in Section 3.1.3, EI’s 
model treats time as a modifier of the relationship between inputs and outputs.  In the model 
presented here, time is treated as an explanatory variable.  This avoids the problems of bias 
and artificial significance in output coefficients, arising because both inputs and outputs trend 
over time, which was discussed in Section 3.1.3. 

The model is specified as follows: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖02 + 𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓 + 𝑏𝑏𝑖𝑖𝑖𝑖2 𝑡𝑡 

Here time, 𝑡𝑡, enters as an explanatory variable rather than a modifier.  Since it enters as an 
explanatory variable, the coefficient on time 𝑏𝑏𝑖𝑖𝑖𝑖2  is constrained to be positive for 
comparability with the coefficients on other explanatory variables.  This model also includes 
a constant, 𝑎𝑎𝑖𝑖𝑖𝑖02 . 

Using this model where time enters additively rather than as a modifier, the results are again 
quite different to those from EI’s original report.  A lower proportion of coefficients are 
significant on all four outputs: energy, demand, customer numbers, and circuit length.  The 
two variables with the most frequently significant coefficients are time and the constant, 
indicating that both are relatively more important to explaining input demand than are any of 
the outputs.  

It was possible to estimate 45 of the original 52 regressions using this model. The remaining 
seven failed to converge.70 

3.1.5.4. Fixed effects panel model 

Our fourth alternative model combines the data from all DNSPs, running one regression for 
each of the four inputs instead of thirteen DNSP-specific regressions.  That is, we treat the 
data as a panel rather than separate time series.  This overcomes the problems arising due to 
the small sample size, for example, the failure of the maximum likelihood algorithm to 
converge for the specification in natural logarithms.   

The specific panel data model we use is a fixed effects model.  This model includes an 
DNSP-specific “fixed effect” to account for unique characteristics that create differences in 
the regression left-hand side variable which are constant over time.  For example, in a model 

 
69  The regressions which did not converge were for provider END, with UG and transformers as the inputs.  
70  The regressions which failed to converge were: all four of the models for DNSP JEN, and all but the opex model for 

ACT. 
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where OHL is the left-hand side variable, the fixed effect captures the differences in scale of 
DNSP networks.  The specification is: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = (1 + 𝑏𝑏𝑖𝑖𝑡𝑡)�𝑎𝑎𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓 + 𝑐𝑐𝑓𝑓2� 

The fixed effect is 𝑐𝑐𝑓𝑓2, which is essentially a constant term that differs for each firm.   

Note that the remaining coefficients are no longer indexed by 𝑓𝑓, indicating that the panel data 
model estimates a single coefficient for all thirteen DNSPs.  We see this as an acceptable 
simplification, given that the share calculation in which these coefficients are used takes an 
average of the thirteen coefficients and produces a single index, which is then applied equally 
to all 13 DNSPs for the purposes of the MPFP and MTFP modelling.  

We do not include a constant in this model, because the DNSP fixed effects perform the same 
role.  

Using this fixed effect model, we find that the coefficient on time is significant for all four 
input variables; the coefficient on Energy is significant for OH only; and the coefficient on 
RM Demand is significant for opex, UG, and transformers.  The coefficients on Customers 
and Length are never significant.  Overall, therefore, 4 of 16 output coefficients are 
significant (25 per cent) and all time coefficients are significant (100 per cent). 

3.1.5.5. Accounting for many coefficients in the alternative models 

Like EI’s original model, our alternative models face the problem that when estimating many 
coefficients, some of them will appear significant just by chance.   

The solution to this problem is to apply a Bonferroni correction to the statistical tests.  The 
results of applying this correction to EI’s original model, the model in log-log, the model 
with a constant, and the model with a time trend are seen in Figure 3.3.   

The fixed effects approach involves fewer coefficients; we estimate only 16 output 
coefficients rather than 208.  Therefore it is not comparable to the other models and is not 
displayed in Figure 3.3.  It is also less severely affected by the many coefficients problem or 
by the Bonferroni correction.  Applying the Bonferroni correction to the fixed effects model, 
4 of 16 (25 per cent) of output coefficients are significant.  Energy is significant for OH only, 
and the coefficient on RM Demand is significant for opex, UG, and transformers.  

The most important result from Figure 3.3 is that no matter what regression specification we 
use, less than 40 per cent of the coefficients on each output is significant.  This means that 
over 60 per cent of estimated coefficients are statistically indistinguishable from zero.  For 
energy in particular this is much lower: about 95 per cent of the coefficients are statistically 
indistinguishable from zero.   

This means that we can have no confidence in output weights calculated using the 
coefficients from any of these specifications.  Output weights calculated using zero, instead 
of the estimated output coefficients, would be statistically justified. 
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Figure 3.3: Fewer coefficients are significant using the Bonferroni correction 

 
Source: NERA analysis 

The second important result from Figure 3.3 is that the set of coefficients which are 
significant changes depending on which specification is used.  This is particularly noticeable 
for customer numbers and circuit length.  The changes in significance reflect changes in the 
values of the estimated coefficients, which can be seen in the Tables in Appendix B.  These 
changes result in changes in the output weights.  

The implication is that output weights change depending on the regression model 
specification.  Therefore, we must have confidence that the regression specification used 
provides a good approximation to the statistical relationship between inputs and outputs.  
Because of the problems outlined in Sections 3.1.1 through 3.1.4, we do not have this 
confidence in EI’s Leontief regressions. 

In short, these coefficients should not be relied upon as inputs to further calculations.  By 
extension, the EI coefficients, which are based on a less robust specification, should also not 
be relied upon as inputs to further calculations. 

3.2. Process of Combining Coefficients Into Output Weights 

In this section, we appraise the second part of EI’s process in determining output weights in 
the MPFP modelling: converting regression coefficients into output weights.  We describe 
this process in Appendix A.1.2 below.  In short, we conclude that the MTFP weights which 
inform the MPFP model do not reflect a mix of outputs which drive opex. 
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3.2.1. The model weights vary counterintuitively between companies 

In assuming a single set of weights which apply to all companies, EI implicitly assumes that 
all companies have the same drivers of efficient opex.  However, this is directly contradicted 
by the inconsistency of the coefficients and hence output weights when considering 
companies separately.  For each of 52 regressions, we have calculated the share of the fitted 
input cost which is driven by each output variable – effectively the coefficient multiplied by 
the variable level, accounting for the multiplicative effect of time.  We show these in Table 
3.1, separated by input variable. 

Table 3.1: Contribution of Outputs to Inputs 

Input: Opex 

  Energy RM Demand Customers Length 
ACT 0% 8% 0% 93% 
AGD 0% 100% 0% 0% 
AND 0% 100% 0% 0% 
CIT 100% 0% 0% 0% 
END 90% 0% 0% 11% 
ENX 0% 100% 0% 0% 
ERG 0% 10% 0% 90% 
ESS 0% 0% 100% 0% 
JEN 0% 0% 100% 0% 
PCR 0% 11% 0% 89% 
SAP 0% 100% 0% 0% 
TND 100% 0% 0% 0% 
UED 94% 6% 0% 0% 

 

Input: Overhead Lines 
  Energy RM Demand Customers Length 
ACT 0% 82% 0% 19% 
AGD 0% 0% 0% 100% 
AND 0% 1% 0% 99% 
CIT 0% 0% 21% 79% 
END 0% 29% 0% 71% 
ENX 0% 4% 0% 96% 
ERG 0% 25% 0% 75% 
ESS 24% 0% 0% 76% 
JEN 0% 3% 28% 69% 
PCR 0% 0% 62% 38% 
SAP 11% 0% 17% 72% 
TND 19% 0% 0% 81% 
UED 0% 12% 88% 0% 
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Input: Underground Cables 

 Energy RM Demand Customers Length 
ACT 0% 36% 0% 64% 
AGD 0% 0% 0% 100% 
AND 0% 0% 100% 0% 
CIT 13% 0% 0% 87% 
END 0% 0% 0% 100% 
ENX 0% 100% 0% 0% 
ERG 0% 100% 0% 0% 
ESS 0% 61% 0% 39% 
JEN 0% 0% 0% 100% 
PCR 0% 87% 13% 0% 
SAP 0% 29% 0% 71% 
TND 0% 0% 32% 68% 
UED 0% 16% 40% 44% 

 

Input: Transformers 
  Energy RM Demand Customers Length 
ACT 20% 0% 0% 80% 
AGD 0% 100% 0% 0% 
AND 0% 58% 31% 11% 
CIT 51% 4% 0% 46% 
END 0% 10% 0% 91% 
ENX 0% 38% 0% 62% 
ERG 0% 0% 100% 0% 
ESS 0% 0% 100% 0% 
JEN 0% 20% 0% 80% 
PCR 0% 8% 0% 92% 
SAP 28% 10% 0% 62% 
TND 0% 0% 100% 0% 
UED 0% 29% 71% 0% 

Source: NERA analysis 

These tables illustrate the instability of EI’s approach to aggregating output weights. 

First, the opex regressions suggest that, for four DNSPs, Energy is the sole or primary driver 
of opex.  For four companies, RM Demand is the sole driver of opex.  For two companies, 
Customers is the sole driver of opex.  For three companies, Length is the sole or primary 
driver of opex.   

Of course, this does not reflect the actual cost function for opex, which likely does not vary 
so dramatically between companies and will not be univariate.  However, the modelling 
arbitrarily assigns weight to a single variable over the others due to problems in the model 
specification, especially the lack of a constant.   

In the case of the opex models especially, the fitted opex is driven by a single dominant 
driver in all models.  The smallest dominant driver still receives 89 per cent weight, and 8 of 
13 models are entirely explained by just a single output driver.  This suggests that the 
Leontief specification assigns high weight to a single variable as a means of proxying for the 
omitted constant term rather than to explain variation in costs. 
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Second, the dependent variable in the OHL and UG regressions is the product of network 
length and network capacity of OHL or UG (denominated in MVAkm).  Given that the 
dependent variables are a linear combination of one actual output variable (Length) and a 
close proxy of another one (RM Demand as a proxy for network capacity), these inputs 
should only be driven by Length and RM Demand, out of the four output variables available. 

For the OHL regressions, it is mostly true that Length is the primary driver of the dependent 
variable.  However, the secondary driver is no more likely to be RM Demand than it is any 
other output variable.  Additionally, in 3 of 13 models, Length is not the primary driver of 
OHL.  For example, the model finds that UED’s OHL is driven mostly by Customers, with a 
small secondary contribution from RM Demand.  It finds that it is not driven at all by Length.  
This is clearly incorrect, and demonstrates the propensity of the Leontief regressions to 
identify false relationships at random. 

For the UG regressions, the relationship between Length, RM Demand and UG is even less 
clear.  Length is the primary driver barely more than half of the time, and fails to register at 
all in 4 of 13 regressions. 

EI argues that it “minimise[s] the risks associated with the limited degrees of freedom per 
regression and the fixed propositions nature of the Leontief cost function [by taking] a 
weighted average of the derived output cost shares across all the Australian DNSP 
observations”.71  However, this relies on an assumption that the probability that the model 
will assign a high weight to a particular output variable is equal to that output’s importance in 
driving costs.  As we demonstrate above, this is unlikely to be the case.  

3.2.2. EI’s approach gives positive weight to meaningless variables 

By using squared coefficients, the EI Leontief model forces the output coefficients in each 
regression to be non-negative.  If the true relationship between the output variable and the 
input variable is negative, or if the observed data in the sample suggests a negative 
relationship, the MLE process finds a coefficient of 0 on that variable. 

In its response to our December 2018 report on the calculation of output weights,72 EI 
highlights this point, explaining that “[i]f the relationship in the database is non–existent then 
the regression will return a zero estimate for the output coefficient.  If the relationship in the 
database is negative then the regression will force the estimated coefficient to zero as it is the 
least cost way it can satisfy the non–negativity constraint that is being imposed”.73 

However, due to the imprecision with which the model is estimated, with an illogical 
specification and only eight degrees of freedom, it is incorrect to assume that a variable with 
a non-existent relationship would always receive a coefficient of zero.   

In a properly-specified regression equation with sufficient degrees of freedom, we would 
expect a meaningless variable to have a statistically significant coefficient about 5 per cent of 

 
71  Economic Insights (30 April 2019), Review of NERA Report on Output Weights, p.6. 
72  NERA (18 December 2018), Review of AER’s Proposed Output Weightings – Prepared for CitiPower, Powercor, 

United Energy and SA Power Networks. 
73  Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy Regulator’s  

2020 DNSP Annual Benchmarking Report, p.8. 
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the time, or two to three times out of 52 regressions.  This is even more likely in the 
particular models in question, because: 

▪ The forced relationship does not match the actual relationship between outputs and 
inputs.  For example, by omitting a constant, the model assumes constant returns to scale 
rather than increasing returns to scale empirically observed in network industries.  
Additionally, the non-additive specification of time means that the regressions capture 
movements in input and output variables that are both driven by time. 

▪ With only eight degrees of freedom to estimate five independent variables, it is unlikely 
that a meaningful relationship would be identified separately from other potential 
relationships.  This is compounded by the fact that the output variables are correlated with 
one another, meaning that more data is generally necessary to identify separate effects 
from them. 

▪ Because there is no constant term, the econometric specification guarantees that at least 
one variable will be statistically significant, or that multiple variables will be jointly 
significant. 

For the three reasons above, it becomes effectively random which variables actually receive 
weight in a given regression.  We show this above in Table 3.1, which shows the weight that 
each output variable has in determining opex.  There is no economic reason to believe that 
Energy is the primary driver of opex for four companies, Ratcheted Maximum for four 
companies, Network Length for three companies, and Customer Numbers for two companies.  
The model has simply assigned full or nearly full weight to these variables essentially by 
chance.  In any case, that EI’s regressions suggest that the cost function for these companies 
are so different undermines its case for benchmarking at all:  The AER has no reason to use 
common output weights to forecast changes in costs if each company has an entirely different 
cost function. 

In the absence of a squared coefficient term, we would expect some coefficients to be 
negative some of the time, especially if the relationship between that variable and the input 
variable is weak or non-existent.  If negative coefficients were possible, it may be true that, 
when aggregating across all 52 models, the poor explanatory variables would receive smaller 
or no weight. 

However, as the models are currently designed, these variables will never receive a negative 
coefficient.  They will receive a positive coefficient some of the time simply due to chance, 
and a 0 coefficient when they would otherwise receive a negative coefficient.  As a result, 
when averaging across 52 regressions, such a variable will receive a positive output weight 
even when it does not explain changes in cost whatsoever. 

We demonstrate this effect by removing the Energy variable as reported by companies and 
replacing it with a random number generated based on the mean and standard deviation of 
each company’s actual Energy value.  In effect, this randomly generated variable resembles 
each company’s energy variable in level and distribution but without any relation to cost in 
each year because random variations in it could not possibly explain variations in cost.  We 
replicate this analysis 100 times and report weights resulting from each simulation in Figure 
3.4 below.   
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Figure 3.4: Weight Assigned to Random Energy Variable 

 
Source: NERA analysis  

As the figure shows, the output weight assigned to this random variable is larger than the 
weight assigned to the actual Energy in 95 per cent of cases, even though it clearly bears no 
relation to variations in cost.  This suggests that Energy is no stronger a driver of cost than a 
random number is. 

A similar story emerges if we remove Energy as a driver in the 52 regressions and replace it 
with a variable that we know to be spurious.  We have done this using the following data 
series in place of Energy: 

▪ Annual flights to and from Melbourne Airport.  This variable receives around 37 per cent 
weight, larger than any of the other included output variables. 

▪ The exchange rate between British Pounds Sterling and New Zealand Dollars (expressed 
as GBP per NZD).  This variable receives 19 per cent weight. 

▪ The number of girls born in the Republic of Ireland each year named Zoe.  This variable 
receives 19 per cent weight. 

▪ Energy delivered by a different DNSP.  We have run all 12 degrees of offset (e.g. Offset 1 
uses the Energy variable from the next company alphabetically, Offset 2 uses the Energy 
variable from the second company down alphabetically, etc.).  In seven instances, the 
weight assigned to Energy is higher than when the company’s own Energy variable is 
used, while in the remaining five cases the regressions do not converge (i.e. the maximum 
likelihood algorithm was unable to find a solution). 

With ample time and computational resources, it is possible to data-mine any number of 
spurious relationships in any context.  We have carried out no such exercise in this case, with 
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each of the variables above manually downloaded and individually run through our Stata 
code. 

In fact, all of the spurious data series above (including the randomly-generated Energy 
variables above) have one key feature in common: they all exhibit similar levels of variation 
relative to their mean levels.  Due to the restrictions of the econometric specification (non-
negative coefficients and no constant), most regressions only have one variable with only one 
non-zero output coefficients.  Therefore, a variable with any negative values or with large 
variation relative to its mean would be very unlikely to explain opex or the capital inputs, 
which exhibit relatively little variation relative to their means in each year.   

The same is not true in a less restrictive specification: an independent variable’s negative 
values could be captured by a negative coefficient and a volatile variable to could receive a 
smaller coefficient plus a positive constant.  Our analysis demonstrates that, once we have 
accounted for the restrictive econometric specification, it is very easy to find variables that 
apparently drive MTFP inputs. 

In short, the flaws of the econometric specification coupled with the small sample sizes 
means that the finding of a positive econometric relationship does not suggest a positive 
causal relationship, even if it is statistically significant.   

Moreover, EI’s approach of combining the results of 52 regressions does not add confidence 
in its findings, because its averaging approach only captures positive coefficients and not 
offsetting negative coefficients.  Because the approach places excessive weight on 
meaningless variables, and weights are constrained to sum to 100 per cent, EI’s approach also 
assigns insufficient weight to meaningful variables.   

3.2.3. Excess and arbitrary weight is placed on OHL, UG and transformer 
models 

EI provides no explanation for why it uses capital inputs in its calculation of weights that are 
ultimately used to determine opex allowances.   

The calculation of output weights depends on the contribution of the outputs to opex, OHL, 
UG, and transformers.  Of these, only opex is opex; the remaining three are capital inputs.  EI 
explicitly acknowledges this in its report, writing that the Leontief regression is intended to 
provide “an approximation to any underlying production structure” and stating that “MTFP 
levels are an amalgam of opex MPFP and capital MPFP levels”.74  However, EI does not 
explain how this “underlying production structure” is appropriate for measuring opex 
productivity in its own right.   

It would therefore be reasonable to expect that the calculation of the opex MPFP index would 
make use of output weights calculated using the opex regressions only.  One would expect 
that only the calculation of the full MTFP index would be based on regressions for all four 
inputs.  This would also be consistent with the cost functions, which econometrically 
calibrate the weight of each output based on how it drives opex rather than opex and capital 
inputs together. 

 
74  Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy Regulator’s  

2020 DNSP Annual Benchmarking Report, p.1 & p.24. 
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Instead, the opex MPFP index is calculated using output weights derived from all four inputs.  
Our analysis shows that opex has a weight of only 36.9 per cent in the construction of these 
indices.  The implication is that opex allowances are being set on the basis of indices that are 
more than half determined by non-opex inputs. 

In Table 3.2, we compare the weights as derived from Opex models only with the weights 
reported in EI’s analysis.   

Table 3.2: MTFP Output Weights 

  Energy RM Demand Customers Length 
Opex Only 16.87% 48.13% 15.66% 19.34% 
MTFP 8.58% 33.76% 18.52% 39.14% 
Delta +8.29% +14.37% -2.86% -19.80% 

Source: NERA analysis and EI 

As the Table demonstrates, the weights resulting from models which are more directly 
relevant to DNSPs’ opex efficiency show very different weights from those that seek to 
explain capital inputs as well.  The weights outlined for opex alone are not themselves 
reliable.  Their calculation is subject to all of the criticisms previously outlined in Section 3.1.   

Analysis based on opex alone should be used to determine opex allowances, not analysis 
which also incorporates capital inputs.  However, the weaknesses of the MPFP method 
outlined in Section 3.1 mean that a revised MPFP analysis using weights based on only the 
opex regressions is not correct either.   

3.2.4. Different econometric specifications yield different output weights 

The weights allocated to each of the four outputs depend on the regression specification used.  
We illustrate this by comparing the weights derived in EI’s original analysis with the weights 
derived from the more appropriate alternative models considered in Section 3.1.5.  We also 
show the weights derived from the “Random Energy” models described in Section 3.2.1, and 
the weights if derived only from the models with Opex as the dependent variable. 

Finally, for comparison, we include the weights derived from the  cost functions, and used in 
the Draft Determinations in Victoria.  These do not include Energy as a variable.  While we 
have not furthered our arguments on this matter in this report, the inclusion of Energy as an 
output variable in the MPFP model has been a subject of debate between us, Frontier 
Economics and EI.  The cost functions consistently place considerably higher weight on 
Customers than the Leontief models.  As the statistical sample is much more robust (with 
several hundred degrees of freedom), these models give an indication of what weights might 
be expected for the MPFP model using more robust econometric methods. 

The weight allocated to each of the four outputs under different regression specifications is 
seen in Figure 3.5.  The underlying numbers are given in Table 3.3.   
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Figure 3.5: Output weights vary with regression specifications 

 
Source: NERA analysis 

Table 3.3: Output weights from different regression specifications 

Model Energy RM Demand Customers Length 
EI report 8.58% 33.76% 18.52% 39.14% 
w/ constant 10.85% 50.99% 7.41% 30.75% 
w/ time trend 9.94% 48.90% 6.88% 34.27% 
Fixed Effects 7.40% 89.14% 3.46% 0.00% 
Rand. Energy (5th) 8.32% 32.86% 17.46% 41.36% 
Rand. Energy (95th) 23.95% 29.28% 10.23% 36.54% 
Opex Models Only 16.87% 48.13% 15.66% 19.34% 
LSE CD 0% 15.48% 68.95% 15.56% 
LSE TLG 0% 40.89% 37.95% 21.16% 
SFA CD 0% 17.50% 67.43% 15.08% 
SFA TLG 0% 17.90% 69.73% 12.37% 
Bench. Models Avg. 0% 22.94% 61.02% 16.04% 

Source: NERA analysis 

The first bar of Figure 3.5 shows the output weights allocated by EI’s original analysis.   

The second through fourth bars show the output weights allocated by our alternative 
regression specifications, where the weights on the output variables have been re-scaled to 
sum to 100 per cent (i.e. excluding the weight on the constant term).   
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The final two bars show the output weights allocated using EI’s original model but replacing 
the energy variable with a randomly generated variable.  We considered 100 random energy 
variables; this figure shows only those at the 5th and 95th percentile, ranked by output weight 
allocated to the random energy variable. 

The sensitivity of the output weights to the regression specification is clear.  The output 
weight allocated to energy is halved when moving from the EI model to the panel fixed 
effects model.  The weight allocated to customer numbers shrinks to less than a third of its 
previous value in all alternative specifications.  In the EI model, circuit length is the greatest 
contributor to output costs; in all alternative specifications, demand is the greatest 
contributor. 

The effect of the random energy variable on output weights especially demonstrates how 
arbitrary the weighting process is.  

First, the fact that a random variable can be allocated a weight of nearly 25 per cent calls the 
validity of the entire procedure into question.   

Second, the use of the Leontief cost function presupposes that the contribution of each output 
to cost is unrelated to the contributions of other outputs.  We therefore expect that when the 
contribution of Energy to costs increases (moving from the 5th to 95th percentile of Random 
Energy), the contribution of the other three outputs should fall in equal proportions. However, 
this is not what we see.  Moving from the 5th to the 95th percentile of Random Energy, the 
contribution of customers to costs shrinks by more, in both absolute and relative terms, than 
the contributions of either RM Demand or Length.  This suggests that the contribution of 
Customers to costs depends on the contribution of Energy to costs, invalidating the 
underlying Leontief specification. 

Overall, this analysis illustrates that the output weights derived from the Leontief regressions 
are not reliable because they are volatile and precarious to changes in model specification.  
Alternative, more plausible specifications of the regressions yield very different weights.  The 
results from the Random Energy analysis call the validity of the entire procedure into 
question.   

In short, we conclude that the weights that actually come out of the Leontief specification are 
effectively random.  EI could select four weights at random and not be further from the truth 
than it is under these output weights. 

3.3. Implications of Output Weight Calculations 

As we establish in the previous sections of this chapter, the output weights from the Leontief 
modelling are effectively random, with no bearing to actual drivers of cost.  In this section, 
we set out the implications of these random output weights across the uses of the MPFP 
model.  For each of these uses, we calculate alternative values and figures using the range of 
output weights set out in Table 3.3 above.  For brevity, we include the average weights of the 
cost functions rather than all four separately. 

3.3.1. Base Year Efficiency Assessment 

As described in Section 2.2.1, the MPFP efficiency score is one piece of evidence that the 
AER uses to assess whether a DNSP’s base year opex proposal is efficient.   
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In Figure 3.6 below, we demonstrate how each DNSP’s MPFP efficiency score varies under 
the full range of output weights.  In Table 3.4 we present the rank of each company in each 
model. 

Figure 3.6: MPFP Efficiency Scores Under Alternative Weights 

 
Source: NERA analysis 

Table 3.4: MPFP Efficiency Ranks Under Alternative Weights 

  
EI 

Weights 
Model w 

Cons. 

Model w 
Time 

Trend 

Panel 
Fixed 

Effects 

Random 
Energy 

(5th) 

Random 
Energy 

(95th) 

Opex 
Models 

Only 

Cost 
Function 

Avg 
ACT 12 12 12 10 12 12 9 10 
AGD 13 13 13 11 13 13 11 11 
AND 6 8 9 9 7 10 10 9 
CIT 3 1 2 1 3 3 1 1 
END 10 6 5 8 10 6 6 8 
ENX 8 7 7 6 8 5 7 6 
ERG 9 9 8 13 6 9 12 13 
ESS 5 10 10 12 5 8 13 12 
JEN 11 11 11 5 11 11 8 5 
PCR 1 2 1 3 1 1 2 3 
SAP 2 3 3 4 2 2 3 4 
TND 4 4 4 7 4 4 5 7 
UED 7 5 6 2 9 7 4 2 

Source: NERA analysis 
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As the figure and the tables show, DNSPs’ full-period efficiency scores are sensitive to the 
choice of output weights.  While the differences are unlikely to change the AER’s 
conclusions about the relative efficiency of the most and least efficient DNSPs – CIT, PCR 
and SAP are among the top four, while ACT and AGD are in the bottom four, regardless of 
output weights – the rankings could influence the AER’s conclusions on the efficiency for 
companies in the middle. 

For instance, under different weights, ERG’s rank varies from 6th to 13th, ESS’s rank varies 
from 5th to 12th, JEN’s rank varies from 5th to 11th, and UED’s rank varies from 2nd to 9th.  
When considering whether a DNSP is among the top performing firms, these dramatically 
different rankings could plausibly be the difference between the AER deciding to accept the 
company’s opex proposal and not.   

3.3.2. Output weight indexation 

As discussed in Section 2.2.2.1, the MTFP weights are one of five weights that feed into the 
average output weight indexation process, along with coefficients from the four  cost function 
models .  Therefore, the rate of change allowance is directly dependent on the MTFP weights, 
and hence, on the quality of the Leontief regressions and approach to averaging across 
companies and inputs. 

In Table 3.5 below, we restate the output weights from the cost functions as included in the 
Victorian draft determination (though these will be updated in advance of the Victorian final 
determinations).  In Table 3.6, we show the overall output weights from using each of the 
MTFP weights shown in Table 3.3 (i.e. the unweighted average of the four cost function 
models and each of the alternative MTFP weights.  We illustrate these in Figure 3.7 below. 

Table 3.5: Cost Function Model Weights 

  Energy RM Demand Customers Length 
LSE CD 0.00% 15.48% 68.95% 15.56% 
LSE TLG 0.00% 40.89% 37.95% 21.16% 
SFA CD 0.00% 17.50% 67.43% 15.08% 
SFA TLG 0.00% 17.90% 69.73% 12.37% 

Source: AER 

Table 3.6: Average Output Weights Under Different MPFP Approaches 

Model Energy RM Demand Customers Length 
EI report 1.72% 25.11% 52.52% 20.66% 
w/ constant 2.17% 28.55% 50.29% 18.98% 
w/ time trend 1.99% 28.13% 50.19% 19.69% 
Fixed Effects 1.48% 36.18% 49.50% 12.83% 
Rand. Energy (5th) 1.66% 24.93% 52.30% 21.11% 
Rand. Energy (95th) 4.79% 24.21% 50.86% 20.14% 
Opex Models Only 3.37% 27.98% 51.94% 16.70% 
Cost Function Avg 0.00% 22.94% 61.02% 16.04% 

Source: NERA analysis 
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Figure 3.7: Average Output Weights Under Different MPFP Approaches 

 
Source: NERA analysis 

Because each of these outputs is expected to grow at different rates during the coming reset 
periods, the different relative weights on each output has material implications on companies’ 
revenue allowances, especially when compounded over multiple years.   

We show a stylised example of this in Table 3.7 below, which demonstrates what each 
DNSP’s allowance would be in Year 5 of a reset period relative to the base year (Year 0), 
assuming that each output grew at the DNSP-specific average rate from 2015-2019 and that 
there are no other components to the rate of change allowance.  We show the highest and 
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Table 3.7: Impact of Different Output Weights on Year 5 Opex Allowance 

DNSP Max Min Delta 
ACT 110.9% 110.2% 0.7% 
AGD 104.2% 103.2% 1.0% 
AND 107.2% 106.1% 1.1% 
CIT 105.3% 104.7% 0.6% 
END 107.1% 106.2% 0.9% 
ENX 105.4% 104.2% 1.1% 
ERG 104.5% 103.4% 1.0% 
ESS 103.9% 103.6% 0.3% 
JEN 106.8% 105.5% 1.3% 
PCR 106.9% 106.0% 0.9% 
SAP 103.7% 102.8% 0.8% 
TND 103.3% 102.6% 0.7% 
UED 104.4% 103.5% 0.9% 

Source: NERA analysis 

As the table demonstrates, most DNSPs’ opex allowances in the final year of a five year reset 
period vary by around 1 per cent, due exclusively to the arbitrary choice of output weights 
from the MTFP model. 

As we establish in Sections 3.1 and 3.2, the MTFP weights do not reflect a mix of outputs 
which are robustly estimated and relevant to opex.  In particular, these weights are primarily 
based on the (poorly estimated) effect of outputs on capital inputs (i.e. the OHL, UG and 
Transformer models), so they bear little resemblance to the effect of outputs on efficient 
opex, even if they did not suffer from econometric shortcomings.  Therefore, the output 
growth allowance is not likely to reflect changes in efficient opex. 

3.3.3. Industry-wide productivity trends 

As discussed in Section 2.2.2.3, the AER uses the MPFP improvements of the top four firms 
as one piece of evidence to inform its productivity target of 0.5 per cent per annum.  In its 
final decision on productivity, the AER estimated that the top four performing firms (CIT, 
PCR, SAP and UED) improved their MPFP by an average of 0.37 to 0.97 per cent between 
2011 and 2017, based on geometric mean and regression averaging techniques, respectively. 

In Table 3.8 below, we demonstrate how these same pieces of analysis would vary based on 
different MTFP weights.  Note that this is based on the dataset relied upon in EI’s 2020 
Benchmarking report, and “EI Weights” refers to the most recent set of weights after 
correcting for the error in encoding time.  Therefore, we do not replicate the numbers 
presented in the final productivity decision. 
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Table 3.8: Top Four DNSP Productivity Trends under Alternative Weights 

 2011-17 Geometric Mean 2011-17 Regression 
EI Weights -0.59% 0.28% 
Model With Constant -0.77% 0.10% 
Model with Time Trend -0.75% 0.12% 
Panel Fixed Effects -0.14% 0.70% 
Random Energy (5th) -0.59% 0.28% 
Random Energy (95th) -0.81% 0.04% 
Opex Models Only -0.77% 0.08% 
Benchmarking Models Avg -0.14% 0.70%    

Max -0.14% 0.70% 
Min -0.81% 0.04% 
Delta 0.67% 0.66% 

Source: NERA analysis 

As the table shows, the choice of MTFP weights has a material impact on the AER’s 
appraisal of long-term productivity trends of the top four most efficient companies.  Under 
both averaging techniques, the long-term average varies by 0.66-0.67 per cent, simply as a 
result of the choice of weights. 

This piece of analysis was just one of seven that informed the 0.5 per cent productivity target, 
and that target is not derived mechanistically from any one piece of evidence.  Therefore, it is 
not possible to determine with certainty whether the AER’s chosen productivity target would 
have been different with a higher or lower value from this piece of evidence.  However, this 
piece of evidence is clearly highly sensitive to the choice of weights, and we therefore can 
also not say with certainty that the AER would not have selected a different productivity 
target under different weights. 

3.4. Assessment of MPFP Models with Respect to the NER and the 
NEL 

In appraising the MPFP modelling, we evaluate whether the MPFP model and the AER’s 
uses of it reasonably reflect the efficient costs of providing distribution services (i.e. meeting 
the opex objectives), and whether they represent a “realistic expectation of the […] cost 
inputs required to achieve” the opex objectives,75 and whether it allows DNSPs a reasonable 
opportunity to recover its efficient costs, as set out in the NEL.76    

We find that the MTFP output weights do not reflect the relative importance of outputs that 
an efficient operator would deliver.  Therefore, in relying upon the MPFP model in 
determining whether a DNSP’s proposed opex is efficient, or in calculating an alternative 
value to substitute in place of the DNSP’s proposal, the AER fails to reasonably reflect the 

 
75  National Electricity Rules, v150, clause 6.5.6(c).  
76  National Electricity (South Australia) Act 1996, Schedule – National Electricity Law, Section 7A(2). 
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efficient costs of providing distribution services.  Its methods which use the MPFP model do 
not represent a realistic expectation of the cost inputs required to achieve the opex objectives. 

More specifically: 

▪ Numerous technical flaws and data limitations mean that the output weights are 
effectively random and assign positive weight to potentially meaningless variables. 

▪ The MPFP model is unreliable in assessing whether a DNSP’s base year opex is efficient.  
The results of the MPFP model benchmarking do not reflect the cost efficiency of a 
DNSP because they are based on an arbitrary and inaccurate set of output weights.  
Different, and equally valid, sets of output weights may suggest different conclusions 
regarding the DNSP’s base year efficiency.  Hence it is unlikely that the results based on 
the set of weights actually employed represent the services that DNSPs actually deliver. 

▪ When used as part of the output growth portion of the rate of change allowance, the 
MTFP weights are unlikely to reflect changes in outputs which drive changes in efficient 
costs.  By placing excessive weight on some outputs and, as a result, insufficient weight 
on other outputs, the AER will provide excess and inefficient remuneration to DNSPs 
whose output growth is concentrated in the over-represented output categories.  It will fail 
to provide adequate remuneration to efficient DNSPs whose output growth is 
concentrated in the under-represented output categories.  While the MTFP weights 
represent only 20 per cent of the overall output weight methodology, they serve to dilute 
rather than strengthen the accuracy of the overall approach. 

▪ For more ad hoc uses of the MPFP modelling, including the 0.5 per cent productivity 
target, the MPFP modelling is likely to distract rather than add to other pieces of analysis 
which could be used in its place. 

Therefore, we conclude that the use of the MPFP model is inconsistent with the AER’s 
statutory obligations as set out in the NEL and the NER, and should not be relied upon for 
future regulatory decision-making. 
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4. Cost Functions in Place of MPFP 
As we describe throughout this report, the MPFP modelling is part of the AER and EI’s 
toolkit, and has become increasingly so in the last two to three years.  We therefore 
understand that it represents a major methodological shift to discontinue its use, and that the 
AER may be hesitant to do so if it were to sacrifice analysis and evidence that it could 
appraise by no other means. 

There is no reason to believe that the AER would lose information or insight as a result of 
dropping the MPFP modelling.  As we set out in this chapter, the AER could use its cost 
functions in its place for all current uses of the MPFP model.  Indeed, relying on its cost 
functions and eliminating the MPFP model (at least as currently conducted) would improve 
the rigour of the AER’s determinations by eliminating essentially meaningless and arbitrary 
analysis. 

In Section 4.1, we set out how the cost functions can be used for the base year efficiency 
assessment.  In Section 4.2, we set out how greater emphasis can be placed on the cost 
functions in its other uses. 

4.1. Base Year Opex Efficiency Assessment 

The AER uses the MPFP model as one of five benchmarking techniques to assess the 
efficiency of DNSPs’ opex over an extended historical window (e.g. 2006 to 2018 or 2012 to 
2018).  The AER could place more emphasis on its other efficiency assessment approaches 
by omitting the MPFP analysis from this part of the assessment. 

As presented by EI, the MPFP model has an additional advantage over the cost functions in 
that it can be used to assess a DNSP’s efficiency on an individual year basis.  As we describe 
in Section 2.2.1, Jemena’s poor MPFP performance in 2018 specifically was one reason why 
the AER decided to substitute Jemena’s base year opex proposal for its own.  The EI 
benchmarking reports do not allow for similar annual analysis from the cost functions. 

Although (to our knowledge) EI has never presented annual results for individual companies 
from the cost functions, it is trivial to adapt the modelling output to do so.  Based on the 
modelling coefficients estimated over the relevant modelling period combined with annual 
driver levels, one simply needs to calculate the “fitted value” of opex and divide by the 
company’s actual opex (scaled as appropriate by the opex price index). 

In order to maximise its usefulness, some adjustments should be made in calculating fitted 
values: 

▪ In the LSE models, the fitted values should exclude the DNSP-specific dummy variables, 
which capture inefficiency.  If these are included, then all DNSPs will appear to be 
similarly efficient, negating the usefulness of this analysis for any comparative analysis. 

▪ In all models, EI would need to hold the time trend fixed.  If the time trend is allowed to 
increase normally over time, then the annual efficiency score will only be appropriate for 
comparison with the rest of the industry, rather than to measure absolute improvements in 
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efficiency.77  We hold time fixed at 2006. the first year of the benchmarking assessment, 
but any other year would demonstrate similar results. 

Figure 4.1 to Figure 4.4 below show annual efficiency scores by firm based on the four cost 
functions estimated between 2006 and 2019. 

Figure 4.1: Annual Efficiency Scores - LSE CD 

 

 
77  By holding fixed the time trend, relative comparisons are still possible. 
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Figure 4.2: Annual Efficiency Scores - LSE TLG 

 

Figure 4.3: Annual Efficiency Scores – SFA CD 
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Figure 4.4: Annual Efficiency Scores – SFA TLG 

 
Source: NERA analysis 

In these figures, we can see each firm’s efficiency relative to its peers on an annual basis, and 
also relative to itself in previous years (since we exclude the effect of the time trend). 

The absolute level of efficiency requires some interpretation or re-scaling as necessary.  In 
the LSE models, efficiency is calculated relative to ACT’s average efficiency, the DNSP 
whose dummy variable is omitted in modelling.  ACT’s average efficiency score is therefore 
1.0 (or 100 per cent efficiency) by definition in 2006 (ignoring the industry-wide time trend 
which we hold constant).  Because ACT is among the least efficient companies according to 
these models, other DNSPs’ annual efficiency scores are higher than one (i.e. more than 100 
per cent efficiency). 

In the SFA models, the model specification puts the most efficient firm on the frontier with 
an efficiency score of 1.0 by definition (again ignoring the effect of time).  All other firms 
have scores that are lower than this. 

For cross-model comparisons between the LSE and the SFA models, the AER (or EI) would 
need to re-scale to a common base.  In Figure 4.5, we present each firm’s annual efficiency 
score on average across the four cost functions, with each function’s scores re-scaled so that 
the best-performing firm in each model has an average efficiency score of 1.0. 
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Figure 4.5: Annual Efficiency Scores – Average across cost models 

 

These efficiency scores can be approximately decomposed between the different drivers as 
well.  We have calculated this decomposition for the LSE CD model by estimating the share 
of each driver in contributing to the total fitted score by year and DNSP.78  We present this 
below for UED, but this could be presented for any company or aggregation of companies 
(e.g. by state or across the industry). 

 
78  In order to ensure positive values, we re-estimate the model without de-meaning the variables, and calculate the ratio of 

each coefficient multiplied by the logged output level, relative to the total fitted logged opex.  This is only an 
approximation because, in a Cobb-Douglas specification (which is multiplicative), the contribution of one output to the 
total depends on the levels of all other outputs. 
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Figure 4.6: UED Decomposed Opex Efficiency 

 
Source: NERA analysis 

In this model, we see that UED became more efficient from 2006 to 2019, albeit with a 
decline in 2011.  Were we to overlay this with the same from other companies (i.e. Figure 
4.1), we could make comparative statements about UED’s relative efficiency in any given 
year. 

In this example, UED’s output levels mostly grow slowly and steadily over the course of the 
modelling period, and hence so does UED’s allowed opex.  UED’s actual opex is much more 
volatile.  The troughs in the period represent times when UED’s opex was higher than normal 
(and not explained by the relatively stable output levels), while the peaks (e.g. 2018-19) 
represent periods when opex was low. 

When interpreting the decomposed levels included in the Figure, a trough in one colour (e.g. 
blue for Customers) represents a period when UED’s customer-driven opex was high relative 
to the number of customers it actually served, and vice versa for the peaks. 

As EI does with MPFP modelling, this can be modified to decompose the changes in 
efficiency from any year to any other year.  We demonstrate this in Figure 4.7 below, which 
decomposes changes to UED’s LSE-CD efficiency score from 2018-19, equivalent to Table 
5.40 in the 2019 EI Benchmarking report.79 

 
79  See for example: Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy 

Regulator’s 2020 DNSP Annual Benchmarking Report, Figure 5.40.  
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Figure 4.7: UED 2018-19 Changes in Opex Efficiency 

 
Source: NERA analysis 

As the figure shows, UED’s outputs grew between 2018 and 2019, driven primarily by 1.8 
per cent growth in Customers.  Its opex also grew (hence the negative red bar), but by less 
than would be anticipated by the output growth.  Therefore, its opex efficiency improved 
overall, as shown in the black bar. 

While we have not done so, this analysis could be trivially extended to the SFA CD model.  
Further simplifying assumptions would be necessary to extend it to the TLG models, because 
TLG models include cross-product terms that are not straightforward to allocate to individual 
outputs. 

4.2. Other Uses 

Other uses of the MPFP model are even simpler to adapt to the cost functions: 

▪ The output growth process uses weights from the four cost function models plus the 
MTFP weights (with 20 per cent weight each).  The AER could simply remove the MTFP 
weights from this calculation and place 25 per cent weight on the weights from each of 
the cost functions. 

▪ The AER relied on several different pieces of evidence in formulating its productivity 
assumption.  The AER could simply place greater consideration on the other pieces of 
evidence and ignore the results of the MPFP model. 
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5. Conclusion 
We have carried out a thorough review of EI’s Leontief modelling, the MPFP modelling 
based upon it, and the AER’s use of various components of EI’s outputs.  We find that EI’s 
method for deriving output weights is highly arbitrary, poorly justified, and highly likely to 
result in weights that are unrelated to drivers of efficient opex.   

The AER’s uses of the MPFP modelling are highly sensitive to the choice of output weights.  
Therefore, the AER’s price control parameters which rely upon MPFP modelling are unlikely 
to reasonably reflect the efficient cost of providing distribution services, as is stipulated by 
the NER.  Moreover, by using MPFP modelling as a supplement to other forms of modelling, 
the AER reduces weight on modelling techniques which may reflect the efficient costs of 
providing distribution services, and the final price control parameters are less likely to satisfy 
the opex criteria.   

Therefore, the AER fails to satisfy the opex criteria of the NER by relying in part on the 
MPFP model.  The AER could better satisfy the opex criteria by placing no consideration on 
the MPFP model. 

While the AER has previously turned to the MPFP model as a flexible, granular tool to fit a 
variety of purposes, the cost functions can be adapted for all of these same purposes, but with 
a more robust and reliable methodology underpinning them. 
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Appendix A. MPFP Modelling Approach Description 

A.1. Calculating output weights 

A.1.1. Leontief regression models 

EI uses regressions to estimate the contribution of each of four outputs to demand for each of 
four inputs.  It uses unique regressions for each of the four inputs and each of the 13 
providers, giving a total of 52 regressions.  The four inputs are: operational expenditure in 
2006 AUD; overhead lines (OHL) in MVAkms; underground cables (UG) in MVAkms; and 
transformers in MVA.  The four outputs are: Energy; Customers; RM Demand; and Length. 

The regression model used is 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∼ �1 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

where 𝑖𝑖 indexes the input (one per regression); 𝑓𝑓 indexes the firm (one per regression); and 𝑡𝑡 
indexes time (13 years).  The level of the input at time 𝑡𝑡 is 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 and the level of output 1 at 
time 𝑡𝑡 is 𝑦𝑦1𝑓𝑓𝑓𝑓 (outputs 2-4 are analogous).  The output coefficients are 𝑎𝑎𝑖𝑖𝑖𝑖12  through 𝑎𝑎𝑖𝑖𝑖𝑖42 , 
which capture the contribution of the relevant output to input demand (the model forces the 
coefficient to be positive by requiring it to be a square).  The time coefficient 𝑏𝑏𝑖𝑖𝑖𝑖 captures 
how the relationship between the input and output changes over time.  

EI estimates these coefficients using a maximum likelihood function in Shazam.  We have 
replicated this analysis in Stata, an industry-standard statistical software.  We have replicated 
the coefficients of the model to a high degree (out of 260 coefficients, including time, the 
largest discrepancy is 0.09 – our estimate of the coefficient of RM Demand on ACT’s opex is 
2.21, while EI’s is 2.12), though our replicated t statistics are somewhat different.  There is 
no clear directional bias, so we assume that the differences are caused by differences in the 
maximization algorithm. 

A.1.2. Converting coefficients into output weights 

The coefficients estimated from the Leontief regressions are used to calculate output weights 
according to the following procedure.  

First, the predicted total cost of each input, for a given DNSP 𝑓𝑓 at a given time 𝑡𝑡, is 
calculated, based on the regression.  The formula is:  

𝐶̂𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖 × 𝑥𝑥�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖 × �1 + 𝑏𝑏�𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎�𝑖𝑖𝑖𝑖12 𝑦𝑦1𝑓𝑓𝑓𝑓 + 𝑎𝑎�𝑖𝑖𝑖𝑖22 𝑦𝑦2𝑓𝑓𝑓𝑓 + 𝑎𝑎�𝑖𝑖𝑖𝑖32 𝑦𝑦3𝑓𝑓𝑓𝑓 + 𝑎𝑎�𝑖𝑖𝑖𝑖42 𝑦𝑦4𝑓𝑓𝑓𝑓� 

Here {𝑏𝑏�𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎�𝑖𝑖𝑖𝑖12 , … , 𝑎𝑎�𝑖𝑖𝑖𝑖42 } are the coefficients estimated from the regression; 𝑥𝑥�𝑖𝑖𝑖𝑖𝑖𝑖 is the 
predicted demand for input 𝑖𝑖 by DNSP 𝑓𝑓 at time 𝑡𝑡, and 𝑝𝑝𝑖𝑖𝑖𝑖 is the price of input 𝑖𝑖 at time 𝑡𝑡.  
Thus 𝐶̂𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is the predicted cost of input 𝑖𝑖 to DNSP 𝑓𝑓 at time 𝑡𝑡. 

Second, the predicted total cost for all four inputs is calculated. That is: 

𝐶̂𝐶𝑓𝑓𝑓𝑓 = �𝐶̂𝐶𝑖𝑖𝑖𝑖𝑖𝑖

4

𝑖𝑖=1
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Third, the predicted contribution of each output to total cost is calculated.  This calculation 
relies on the assumption of a Leontief cost function.  The assumption that the demand for the 
input due to a given output does not at all depend on the levels of other outputs is what allows 
us to allocate costs to each output.  The calculation is: 

𝐶̂𝐶𝑗𝑗𝑗𝑗𝑗𝑗 = ��𝑝𝑝𝑖𝑖𝑖𝑖 × �1 + 𝑏𝑏�𝑖𝑖𝑖𝑖𝑡𝑡��𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖2 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗��
4

𝑖𝑖=1

 

Here 𝑗𝑗 indexes the output, of which there are four (Energy, RM Demand, Customers, and 
Length).  The contribution of output 𝑗𝑗 to total costs for DNSP 𝑓𝑓 at time 𝑡𝑡 is 𝐶̂𝐶𝑗𝑗𝑗𝑗𝑗𝑗. 

Fourth, a ratio is taken to calculate the contribution of each output to total cost as a share of 
total cost. That is,  

𝑆̂𝑆𝑗𝑗𝑗𝑗𝑡𝑡 =
𝐶̂𝐶𝑗𝑗𝑗𝑗𝑗𝑗
𝐶̂𝐶𝑓𝑓𝑓𝑓

 

Here 𝑆̂𝑆𝑗𝑗𝑗𝑗𝑗𝑗 is the share of the total costs of DNSP 𝑓𝑓 at time 𝑡𝑡 that are attributed to output 𝑗𝑗 . At 
this point, all constructions are still DNSP- and time-specific. 

Fifth and finally, a weighted average of the shares is taken over both DNSPs and time.  The 
weight on a given DNSP-time observation equals the share of the total cost incurred by that 
DNSP 𝑓𝑓 at that time 𝑡𝑡 as a proportion of the total cost incurred by all DNSPs across all time 
periods.  Thus the final calculated share of costs attributed to an output 𝑗𝑗 is 

𝑆̂𝑆𝑗𝑗 =  ��𝑆̂𝑆𝑗𝑗𝑗𝑗𝑗𝑗 × �
𝐶̂𝐶𝑓𝑓𝑓𝑓

∑ ∑ 𝐶̂𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
� 

13

𝑓𝑓=1

13

𝑡𝑡=1

 

Here 𝑆̂𝑆𝑗𝑗 is the share of costs attributed to output 𝑗𝑗.  This is then taken forward as the output 
weight.  

A.2. Measuring MPFP based on outputs and inputs 

Using the weights derived above, EI calculates an output index over the 2006-18 period.  To 
do so, it follows the multilateral Törnqvist TFP technique proposed by Caves, Christensen 
and Diewert (1982).80 

The steps that EI adopts in defining the output index are as follows: 

▪ After a small adjustment for the value of customer minutes lost (a negative value that 
varies by DNSP and year), EI calculates adjusted output shares which are somewhat 
larger than the original output shares.  For example, the original output share for Energy 
is 8.32 per cent; the adjusted output share ranges from 8.49 per cent to 12.04 per cent. 

 
80  Economic Insights (25 August 2020), Economic Benchmarking Results for the Australian Energy Regulator’s  

2020 DNSP Annual Benchmarking Report, p.116 
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▪ For each output (including customer minutes lost), EI calculates the average weight 
across all DNSPs and all years, and adds this average to the DNSP- and year-specific 
output weight. 

▪ For each output, EI calculates the natural logarithm of each DNSP’s level in each year.  It 
then calculates the average of the natural logarithm across the set and subtracts this from 
the DNSP- and year-specific level. 

▪ For each output, EI then multiplies the mean-adjusted (i.e. added) weight by the mean-
adjusted (i.e. subtracted) logged output level. 

▪ EI sums the resulting product across the five outputs (including customer minutes lost) 
and divides by two.   

▪ This yields the natural logarithm of the output index, which EI normalises by subtracting 
the level of the first row (ACT in 2006) from all terms.  It then converts into level terms 
by taking the natural exponential of it, so the first row is equal to 1 (because e0 = 1). 

The output index is divided by various measures of input costs to yield various measures of 
productivity, but the output index itself does not vary between these productivity measures.   

In the case of the opex MPFP model, the output index is divided by the opex index, which is 
itself equal to opex divided by the opex price index.  The opex price index is equal to 1 in 
2006 and inflates each year based on a composite labour, materials and services price index.  
We have not investigated the opex price index further. 

We list each DNSP’s annual opex MPFP score in Table A.1 below, where a higher score 
indicates greater opex productivity. 

Table A.1: Opex MPFP Scores 

DNSP 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
ACT 1.00 0.99 0.98 0.96 0.86 0.75 0.76 0.71 0.63 0.68 1.25 1.10 0.96 1.00 
AGD 0.77 0.91 0.64 0.70 0.65 0.69 0.63 0.81 0.72 0.62 0.69 0.78 0.92 0.98 
AND 1.52 1.30 1.32 1.11 1.23 1.20 1.17 1.05 1.00 0.98 0.85 1.04 1.07 1.05 
CIT 1.85 1.68 1.82 1.51 1.39 1.56 1.22 1.28 1.24 1.31 1.32 1.40 1.62 1.46 
END 1.20 1.13 0.92 1.04 1.12 1.09 1.05 1.16 1.06 1.03 0.98 1.11 1.24 1.31 
ENX 1.21 1.17 1.13 1.14 1.16 1.08 1.03 0.96 1.05 1.01 1.16 1.19 1.18 1.26 
ERG 0.91 1.17 1.08 1.08 1.14 0.96 0.98 1.26 1.29 1.09 1.07 1.25 1.20 1.15 
ESS 1.41 1.27 1.08 1.11 1.11 1.10 0.88 0.99 1.13 1.13 1.42 1.39 1.36 1.18 
JEN 0.91 0.90 1.16 1.07 0.94 0.97 0.86 0.89 0.90 0.90 0.86 0.83 0.92 0.88 
PCR 1.70 1.93 2.00 1.76 1.89 1.88 1.58 1.47 1.59 1.55 1.84 1.78 1.68 1.76 
SAP 2.02 2.12 2.09 1.94 1.86 1.53 1.55 1.44 1.37 1.38 1.62 1.39 1.45 1.40 
TND 1.51 1.48 1.48 1.28 1.10 1.24 1.11 1.41 1.32 1.64 1.52 1.17 1.26 1.43 
UED 1.11 1.18 1.21 1.23 1.20 0.97 0.94 1.06 1.03 1.11 0.99 1.09 1.36 1.37 

Source: EI 

The other input indices in the MTFP models are the input series used to calibrate the output 
weights, described in Section A.1 (overhead lines measured in MVAkm, underground cables 
measured in MVAkm, and transformers measured in MVA). 

These calculations are performed in Shazam, but we have replicated them in Microsoft Excel. 
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A.3. MPFP benchmarking results 

To calculate relative efficiency between firms under the opex TFP model, EI calculates each 
company’s average opex MPFP productivity over the selected window.  In the case of the 
2020 EI report, it uses productivity estimates from 2006 to 2019.  The firm with the highest 
average score is Powercor (PCR), with a score of 1.743 over the period, while Ausgrid 
(AGD) has the lowest average score of 0.749. 

To calculate the MPFP benchmarking scores, EI divides each DNSP’s average score by that 
of the best performing firm.  Thus, PCR has a score of 1 by construction, AGD has a score of 
0.43, and all other firms fall somewhere in between.  We show this calculation in Table A.2 
below.   

Table A.2: MPFP Multiyear Benchmarking Results 

DNSP 2006-19 MPFP Score MPFP Benchmark Score 
ACT 0.90 0.52 
AGD 0.75 0.43 
AND 1.14 0.65 
CIT 1.48 0.85 
END 1.10 0.63 
ENX 1.12 0.64 
ERG 1.12 0.64 
ESS 1.18 0.68 
JEN 0.93 0.53 
PCR 1.74 1.00 
SAP 1.65 0.95 
TND 1.35 0.78 
UED 1.13 0.65 

Source: EI 

These scores can be presented on an annual basis as well, by dividing the annual figures in 
Table A.1 by PCR’s 2006-19 average as shown in Table A.2.   
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Appendix B. Results from Leontief regressions 
These are estimates from our replication of EI’s analysis, as well as the alternative models 
describes in Section 3.1.5.  All tables show the estimated coefficients on Energy, RM 
Demand (Dem.), Customer numbers (Cust.), Circuit Length (Length), and Time.  The raw 
coefficients, before squaring, are reported along with t-statistics.  Blank cells indicate 
regressions where the maximum likelihood procedure did not converge after 16,000 iterations 
(the default maximum iterations in Stata).   

B.1. Replication of EI model 
Table B.1: ACT Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.475 3.123 
Dem. 2.211 0.101 9.356 10.552 2.226 2.883 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 2.719 1.153 1.630 2.426 1.078 5.133 0.722 11.794 
Time 0.002 0.148 -0.006 -6.896 0.021 10.366 0.007 4.079 

Source: NERA analysis 

 

Table B.2: AGD Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.015 0.002 0.001 0.000 0.000 0.000 0.000 0.000 
Dem. -7.928 -30.51 0.007 0.001 0.000 0.000 -2.028 -120.1 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 0.000 0.000 -3.036 -223.8 -2.026 -201.3 0.000 0.000 
Time -0.001 -0.173 -0.003 -2.633 0.007 4.740 0.022 8.473 

Source: NERA analysis 

 

Table B.3: CIT Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.193 31.757 0.000 0.000 0.438 1.129 0.721 3.369 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.394 0.356 
Cust. 0.000 0.000 0.082 1.573 0.000 -0.001 0.000 0.000 
Length 0.000 0.000 1.355 5.790 1.358 6.986 0.810 5.378 
Time 0.038 3.390 -0.010 -12.736 0.020 4.086 0.013 2.608 

Source: NERA analysis 
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Table B.4: END Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 3.013 2.668 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 5.274 3.037 0.000 0.000 0.606 0.863 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 
Length -0.719 -0.275 2.842 7.499 0.945 84.969 0.642 8.223 
Time 0.018 0.941 -0.010 -10.919 0.073 15.307 0.019 12.579 

Source: NERA analysis 

 

Table B.5: ENX Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Dem. 6.921 50.829 1.556 1.139 3.242 157.774 1.283 12.384 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Length 0.000 0.000 -2.351 -26.116 0.000 0.000 0.520 20.399 
Time 0.006 1.063 0.000 -0.034 0.040 18.443 0.018 26.185 

Source: NERA analysis 

 

Table B.6: ERG Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 
Dem. -2.784 -0.231 6.503 1.749 1.913 98.210 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.130 153.975 
Length 1.225 2.265 1.624 5.525 0.000 0.000 0.000 0.001 
Time 0.001 0.128 -0.004 -1.398 0.055 14.421 0.020 10.691 

Source: NERA analysis 
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Table B.7: ESS Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.003 0.000 3.171 0.973 0.000 0.000 0.010 0.007 
Dem. 0.001 0.000 0.000 0.000 1.578 1.845 0.000 0.000 
Cust. -0.577 -26.267 0.000 0.000 0.000 0.000 0.141 66.676 
Length 0.000 0.000 1.423 3.149 0.150 1.324 0.000 0.000 
Time -0.007 -0.714 0.048 11.224 0.072 2.982 0.010 3.235 

Source: NERA analysis 

 

Table B.8: JEN Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 -1.212 -0.558 0.000 0.000 0.844 3.306 
Cust. 0.383 56.098 0.209 0.708 0.000 0.002 0.000 0.000 
Length 0.001 0.000 -2.352 -1.728 1.140 160.373 0.680 13.089 
Time 0.017 3.131 -0.005 -3.599 0.041 20.933 0.021 13.100 

Source: NERA analysis 

 

Table B.9: PCR Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 2.220 0.320 0.000 0.000 1.841 5.212 0.517 3.072 
Cust. 0.000 0.001 -0.622 -6.664 0.040 0.722 0.000 0.000 
Length 1.153 2.744 1.561 4.521 0.000 0.000 0.321 37.485 
Time 0.015 1.339 -0.011 -4.968 0.050 7.123 0.025 28.420 

Source: NERA analysis 
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Table B.10: SAP Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy -0.001 0.000 1.457 3.354 0.000 0.000 0.535 1.600 
Dem. 6.193 36.542 0.000 0.000 1.495 7.660 0.602 0.797 
Cust. 0.000 0.000 -0.207 -2.493 0.000 0.000 0.000 0.000 
Length 0.000 0.000 1.298 10.785 -0.439 -19.189 0.281 5.289 
Time 0.043 4.453 -0.003 -1.763 0.017 19.113 0.029 3.389 

Source: NERA analysis 

 

Table B.11: AND Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 7.378 37.241 1.176 0.374 0.000 0.000 1.525 9.352 
Cust. 0.000 0.000 0.000 0.000 0.152 228.446 0.059 1.259 
Length 0.000 0.000 2.151 29.533 0.000 0.000 0.138 0.407 
Time 0.035 3.897 -0.001 -1.447 0.044 28.832 0.014 2.286 

Source: NERA analysis 

 

Table B.12: TND Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 3.398 31.473 2.069 6.132 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.109 1.748 0.115 207.716 
Length 0.000 0.000 1.908 24.356 0.558 3.797 0.000 0.000 
Time 0.022 2.077 0.002 2.157 0.014 7.016 0.016 10.785 

Source: NERA analysis 
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Table B.13: UED Leontief regression results: EI replication 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 3.080 2.946 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 1.563 0.179 2.353 2.191 0.877 5.421 0.965 7.742 
Cust. 0.000 0.000 0.355 15.900 0.077 2.340 0.086 19.650 
Length 0.000 0.000 0.000 0.000 0.581 2.790 0.000 0.000 
Time 0.015 0.966 0.003 2.124 0.025 14.422 0.018 16.041 

Source: NERA analysis 

 

B.2. Model in logs 
Table B.14: ACT Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.001 

    

Dem. 0.349 0.144 0.885 14.782 
    

Cust. 0.000 0.000 0.000 0.000 
    

Length 1.073 1.781 0.848 17.832 
    

Time 0.000 -0.081 -0.001 -15.100 
    

Source: NERA analysis 

 

Table B.15: AGD Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.001 0.002 

      

Dem. 1.214 386.784 
      

Cust. 0.000 0.000 
      

Length 0.000 0.000 
      

Time 0.000 -0.432 
      

Source: NERA analysis 
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Table B.16: CIT Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 1.077 9.874 0.000 0.000 0.445 1.917 0.612 2.689 
Dem. 0.000 0.000 0.000 0.000 0.001 0.002 0.399 1.637 
Cust. 0.000 0.000 0.439 2.305 0.000 0.000 0.000 0.000 
Length 0.140 0.159 0.900 6.363 0.940 8.127 0.719 6.322 
Time 0.003 3.783 -0.001 -7.529 0.002 4.862 0.001 2.344 

Source: NERA analysis 

 

Table B.17: END Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy         
Dem.         
Cust.         
Length         
Time         

Source: NERA analysis 

 

Table B.18: ENX Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 

      

Dem. 1.207 792.427 
      

Cust. 0.000 0.000 
      

Length 0.000 0.000 
      

Time 0.000 0.047 
      

Source: NERA analysis 
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Table B.19: ERG Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
Dem. 0.338 0.638 0.513 2.111 1.079 1092.695 0.000 0.000 
Cust. 0.002 0.003 0.000 0.000 0.000 0.000 0.833 371.429 
Length 0.982 8.036 0.963 11.127 0.000 0.000 0.006 0.016 
Time 0.000 0.143 0.000 -1.569 0.004 16.689 0.002 16.299 

Source: NERA analysis 

 

Table B.20: ESS Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 0.536 0.660 0.000 0.000 
Cust. 0.958 320.270 0.914 6.766 0.000 0.000 0.843 922.469 
Length 0.000 0.000 0.385 1.072 0.761 2.068 0.000 0.000 
Time 0.000 -0.438 0.002 8.650 0.006 3.206 0.001 4.628 

Source: NERA analysis 

 

Table B.21: JEN Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.001 

    

Dem. 0.000 0.000 0.212 1.041 
    

Cust. 0.920 593.458 0.001 0.004 
    

Length 0.001 0.001 1.098 35.489 
    

Time 0.002 3.517 -0.001 -7.105 
    

Source: NERA analysis 

 

Table B.22: PCR Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 

        

Dem. 
        

Cust. 
        

Length 
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Time 
        

Source: NERA analysis 

 

Table B.23: SAP Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 

      

Dem. 1.070 3.563 
      

Cust. 0.430 0.977 
      

Length 0.000 0.000 
      

Time 0.003 4.951 
      

Source: NERA analysis 

 

Table B.24: AND Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 

      

Dem. 1.239 612.363 
      

Cust. 0.000 0.000 
      

Length 0.000 0.000 
      

Time 0.002 4.476 
      

Source: NERA analysis 

 

Table B.25: TND Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 1.120 3.736 0.468 6.505 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.461 1.977 
Cust. 0.156 0.108 0.000 0.001 0.425 1.805 0.729 8.760 
Length 0.000 0.000 0.984 34.011 0.834 5.549 0.000 0.000 
Time 0.002 1.628 0.000 1.155 0.002 12.373 0.002 11.023 

Source: NERA analysis 
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Table B.26: UED Leontief regression results: log model 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 1.051 4.888 0.000 0.001 0.000 0.000 0.000 0.002 
Dem. 0.426 0.674 0.328 2.060 0.452 8.204 0.541 8.546 
Cust. 0.000 0.000 0.891 26.726 0.581 16.311 0.701 25.280 
Length 0.000 0.000 0.000 0.001 0.574 10.647 0.000 0.000 
Time 0.001 1.106 0.000 2.548 0.002 24.719 0.002 16.368 

Source: NERA analysis 

 

B.3. Model with a constant 
Table B.27: ACT Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.427 2.303 
Dem. -2.175 -0.055 9.356 10.644 2.289 3.055 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 2.723 0.649 1.630 2.447 0.857 1.029 0.661 5.178 
Time 0.002 0.140 -0.006 -6.904 0.024 2.187 0.009 2.378 
Const. 0.000 0.000 0.000 0.000 42.579 0.626 22.601 0.034 

Source: NERA analysis 

 

Table B.28: AGD Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. -7.928 -31.914 0.001 0.000 0.001 0.001 -2.028 -120.091 
Cust. 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 
Length 0.000 0.000 -3.036 -168.839 2.026 199.380 0.000 0.000 
Time -0.001 -0.173 -0.003 -2.631 0.007 4.740 0.022 8.472 
Const. 0.003 0.000 -2.772 -0.005 -0.339 -0.001 0.000 0.000 

Source: NERA analysis 
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Table B.29: CIT Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.193 31.757 0.000 0.000 0.438 1.122 0.721 3.322 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.393 0.350 
Cust. 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 
Length 0.000 0.000 1.274 5.868 1.358 6.938 0.810 5.344 
Time 0.038 3.390 -0.007 -2.498 0.020 4.060 0.013 2.576 
Const. -0.003 0.000 53.285 2.581 0.000 0.000 0.037 0.020 

Source: NERA analysis 

 

Table B.30: END Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.706 2.435 0.000 0.000 

    

Dem. 0.000 0.000 -3.287 -1.076 
    

Cust. 0.000 0.000 0.000 0.000 
    

Length 0.000 0.000 0.000 0.000 
    

Time 0.018 2.210 0.000 0.045 
    

Const. 217.846 0.895 571.161 8.557     
Source: NERA analysis 

 

Table B.31: ENX Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Dem. 6.921 50.829 3.252 5.872 3.242 157.777 1.374 16.691 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Length 0.000 0.000 -0.004 -0.002 0.000 0.000 0.000 0.000 
Time 0.006 1.063 0.010 7.931 0.040 18.443 0.026 23.253 
Const. -0.001 0.000 472.678 26.374 0.000 0.000 107.820 0.000 

Source: NERA analysis 
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Table B.32: ERG Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. -2.785 -0.233 6.503 1.744 1.913 98.210 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.801 
Length 1.225 2.284 1.624 5.511 0.000 0.000 0.000 0.000 
Time 0.001 0.128 -0.004 -1.396 0.055 14.421 0.036 2.507 
Const. -0.001 0.000 0.007 0.000 0.000 0.000 89.707 0.000 

Source: NERA analysis 

 

Table B.33: ESS Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.002 0.000 1.578 1.836 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 0.000 0.000 0.001 0.001 0.150 1.318 0.000 0.000 
Time 0.004 0.341 0.050 16.590 0.072 2.973 0.023 7.359 
Const. 512.566 26.113 710.016 122.840 0.004 0.000 125.242 0.000 

Source: NERA analysis 

 

Table B.34: JEN Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 1.212 0.569 0.000 0.000 0.627 1.929 
Cust. -0.229 -0.408 0.208 0.791 0.000 0.002 0.000 0.000 
Length 0.002 0.001 -2.354 -1.937 1.140 164.708 0.000 -0.001 
Time 0.026 0.931 -0.005 -3.771 0.041 20.933 0.033 14.256 
Const. 165.832 0.729 0.000 0.000 0.000 0.000 54.108 0.000 

Source: NERA analysis 
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Table B.35: PCR Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.002 0.000 0.001 0.001 0.001 0.001 0.000 0.000 
Dem. 2.195 0.312 0.000 0.000 1.841 5.392 0.540 3.961 
Cust. 0.000 0.001 0.475 5.779 0.040 0.747 0.000 0.000 
Length 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.001 
Time 0.019 1.319 -0.006 -2.564 0.050 7.181 0.030 30.069 
Const. 309.055 2.748 531.580 10.877 0.001 0.000 85.466 0.000 

Source: NERA analysis 

 

Table B.36: SAP Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy -0.001 0.000 1.666 3.793 0.000 0.000 0.559 2.159 
Dem. 6.193 36.541 0.000 0.000 -1.495 -7.678 0.584 0.853 
Cust. 0.000 0.000 -0.223 -2.964 0.000 0.000 0.000 0.001 
Length 0.000 0.000 -0.913 -1.461 0.439 19.232 0.000 0.000 
Time 0.043 4.453 -0.001 -0.493 0.017 19.126 0.033 4.706 
Const. 0.018 0.000 243.972 1.494 0.142 0.001 80.281 0.000 

Source: NERA analysis 

 

Table B.37: AND Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 7.378 37.241 1.176 0.374 0.000 0.000 1.526 11.579 
Cust. 0.000 0.000 0.000 0.000 0.152 228.446 0.059 2.056 
Length 0.000 0.000 2.151 29.564 0.000 0.000 0.138 0.673 
Time 0.035 3.897 -0.001 -1.447 0.044 28.832 0.014 3.682 
Const. -0.001 0.000 0.024 0.000 0.000 0.000 0.222 0.002 

Source: NERA analysis 
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Table B.38: TND Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 3.398 31.022 1.087 1.184 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Cust. -0.001 -0.001 0.000 0.000 0.109 1.795 0.115 207.718 
Length 0.000 0.000 1.175 2.310 0.558 3.903 0.000 0.000 
Time 0.022 2.076 0.005 2.802 0.014 7.148 0.016 10.786 
Const. -0.005 0.000 248.244 3.885 -0.008 0.000 0.000 0.000 

Source: NERA analysis 

 

Table B.39: UED Leontief regression results: model with constant 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 3.080 2.973 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 1.563 0.181 2.055 1.665 0.803 4.008 0.965 7.758 
Cust. 0.000 0.000 0.000 -0.001 0.000 0.003 0.086 19.663 
Length 0.000 0.000 0.001 0.001 0.588 3.379 0.000 0.000 
Time 0.015 0.973 0.012 5.354 0.030 10.296 0.018 16.031 
Const. 0.000 0.000 282.081 16.410 61.370 2.671 0.192 0.000 

Source: NERA analysis 

 

B.4. Model with a time trend 
Table B.40: ACT Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 

      

Dem. 1.517 0.060 
      

Cust. 0.000 0.000 
      

Length 2.771 1.507 
      

Time 12.285 0.436 
      

Const. 0.000 0.000       
Source: NERA analysis 
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Table B.41: AGD Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.813 0.291 0.001 0.000 0.000 0.000 0.000 0.000 
Dem. 7.706 5.949 1.649 0.323 0.000 0.000 2.027 118.911 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 0.000 0.000 2.153 3.246 2.025 195.718 0.000 0.000 
Time -0.010 0.000 0.003 0.000 34.139 9.735 24.658 19.330 
Const. -0.001 0.000 400.650 4.844 -0.105 0.000 0.001 0.000 

Source: NERA analysis 

 

Table B.42: CIT Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 1.922 0.929 0.000 0.000 0.068 0.054 0.631 2.544 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.659 0.959 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 1.335 0.289 0.627 4.583 1.457 15.960 0.864 6.147 
Time 30.342 2.078 0.000 0.000 13.245 16.426 8.532 5.281 
Const. 0.000 0.000 87.690 20.851 0.000 0.000 -0.001 0.000 

Source: NERA analysis 

 

Table B.43: END Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.902 2.641 0.000 0.000 0.000 0.001 0.000 0.000 
Dem. 0.002 0.000 3.205 1.086 0.000 0.000 0.000 0.001 
Cust. 0.000 0.001 0.000 0.000 0.183 83.680 0.000 0.000 
Length -0.006 -0.002 0.000 0.000 0.001 0.001 0.000 0.001 
Time 55.628 5.083 8.688 0.158 48.754 46.473 22.597 62.978 
Const. 168.345 0.504 572.914 9.139 0.141 0.001 120.877 254.266 

Source: NERA analysis 
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Table B.44: ENX Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Dem. 6.920 50.116 2.991 1.891 3.235 156.796 1.377 17.268 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 0.000 0.000 1.034 0.364 0.000 0.000 0.001 0.001 
Time 38.865 2.185 47.180 1.511 47.757 47.239 23.908 58.349 
Const. 0.000 0.000 424.745 1.517 0.000 0.000 107.497 22.361 

Source: NERA analysis 

 

Table B.45: ERG Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 3.112 0.281 0.000 0.000 1.908 95.332 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 1.210 2.154 1.852 255.201 0.000 0.000 0.000 0.000 
Time 14.704 0.184 0.000 0.000 25.646 38.599 21.018 48.374 
Const. -0.059 0.000 0.003 0.000 0.000 0.000 102.359 162.253 

Source: NERA analysis 

 

Table B.46: ESS Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 1.518 1.097 0.000 0.000 
Cust. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Length 0.000 0.000 0.001 0.000 0.155 0.890 0.000 0.000 
Time -31.505 -0.698 159.040 43.618 29.194 7.744 18.881 16.770 
Const. 512.561 26.114 710.016 122.868 0.005 0.000 125.242 104.349 

Source: NERA analysis 
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Table B.47: JEN Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy         
Dem.         
Cust.         
Length         
Time         
Const.         

Source: NERA analysis 

 

Table B.48: PCR Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 0.335 0.158 -0.049 -0.012 0.000 0.000 
Dem. 1.916 0.251 0.000 0.000 1.836 3.904 0.540 4.092 
Cust. 0.000 0.000 0.198 10.947 0.039 0.397 0.000 0.000 
Length 1.103 0.885 0.000 0.000 0.000 0.000 0.000 0.002 
Time 41.757 2.661 0.000 0.000 22.544 11.564 15.572 78.777 
Const. 103.499 0.117 636.555 61.520 0.002 0.000 85.449 45.434 

Source: NERA analysis 

 

Table B.49: SAP Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 1.828 8.009 0.000 0.000 0.376 0.823 
Dem. 6.186 35.942 0.000 0.000 1.473 7.242 0.903 2.099 
Cust. 0.000 0.001 0.224 2.497 0.000 0.000 0.000 0.000 
Length 0.000 0.000 0.527 0.530 0.441 18.883 0.005 0.013 
Time 72.760 11.311 0.000 0.000 20.627 42.556 18.016 11.200 
Const. 0.020 0.000 316.471 3.264 -0.016 0.000 84.004 5.238 

Source: NERA analysis 
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Table B.50: AND Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 
Dem. 7.365 36.792 1.367 0.473 0.000 0.000 1.502 9.904 
Cust. 0.000 0.000 0.000 0.000 0.150 143.428 0.064 1.625 
Length 0.000 0.000 1.989 10.669 0.000 0.000 0.108 0.276 
Time 61.582 9.623 -0.001 0.000 27.333 49.866 10.294 5.595 
Const. 0.002 0.000 164.124 2.446 -0.018 0.000 0.083 0.001 

Source: NERA analysis 

 

Table B.51: TND Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.929 1.074 1.008 1.002 0.000 0.000 0.000 0.000 
Dem. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Cust. 0.232 0.380 0.000 0.001 0.095 1.369 0.114 214.718 
Length 0.000 0.000 1.123 2.136 0.586 4.261 0.000 0.000 
Time 27.690 1.092 22.378 6.162 12.417 16.365 7.745 25.375 
Const. 0.000 0.000 254.699 4.123 0.000 0.000 0.000 0.000 

Source: NERA analysis 

 

Table B.52: UED Leontief regression results: model with time trend 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 2.885 2.728 -0.001 0.000 0.000 0.000 0.000 0.000 
Dem. 2.744 0.587 2.057 1.675 0.767 4.147 0.908 6.765 
Cust. 0.000 0.000 0.002 0.006 0.065 1.428 0.088 20.241 
Length 0.000 0.000 0.000 0.000 0.671 3.224 0.000 0.000 
Time 30.900 1.920 33.171 11.760 16.191 34.107 11.219 36.719 
Const. -0.004 0.000 282.024 16.340 0.021 0.000 0.003 0.000 

Source: NERA analysis 
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B.5. Fixed effects 
Table B.53: Panel fixed effects Leontief regression: output coefficients 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
Energy 0.000 0.000 1.511 5.468 0.000 0.000 0.000 0.000 
Dem. -5.104 -12.804 0.000 0.000 -1.951 -7.367 0.994 6.488 
Cust. 0.000 0.000 0.000 0.000 -0.055 -1.465 0.000 0.000 
Length 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
Time 0.006 2.365 0.016 9.550 0.021 14.323 0.028 21.635 

Source: NERA analysis 

 

Table B.54: Panel fixed effects Leontief regression: fixed effect coefficients 

 Opex OHL UG Transformers 
 Coef. T-Stat Coef. T-Stat Coef. T-Stat Coef. T-Stat 
ACT 92.718 0.097 154.689 0.971 -78.450 -4.222 7.172 0.003 
AGD 0.000 0.000 -0.002 0.000 0.000 0.000 -6.975 -0.009 
CIT 452.261 2.160 -485.894 -6.514 351.632 19.415 -108.056 -0.193 
END 0.000 0.000 0.001 0.000 0.000 0.000 -25.148 -0.036 
ENX -241.038 -0.645 -366.172 -4.413 -91.320 -4.801 -49.866 -0.065 
ERG 0.000 0.000 -0.002 0.000 0.000 0.000 -3.393 -0.004 
ESS -115.871 -0.151 -182.136 -1.322 51.210 2.614 -41.687 -0.055 
JEN 115.871 0.152 182.136 1.435 0.000 0.000 -2.749 -0.003 
PCR -249.550 -0.689 515.750 7.300 -148.291 -8.073 81.081 0.120 
SAP 0.000 0.000 -0.001 0.000 0.000 0.000 13.835 0.018 
AND 312.236 1.065 -432.009 -5.569 -190.623 -10.450 97.705 0.161 
TND 0.000 0.000 0.000 0.000 0.000 0.000 21.709 0.029 
UED 385.749 1.606 639.444 9.844 0.000 0.000 -68.260 -0.096 

Source: NERA analysis 
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Qualifications, assumptions, and limiting conditions 

This report is for the exclusive use of the NERA Economic Consulting client named herein. 
This report is not intended for general circulation or publication, nor is it to be reproduced, 
quoted, or distributed for any purpose without the prior written permission of 
NERA Economic Consulting. There are no third‑party beneficiaries with respect to this 
report, and NERA Economic Consulting does not accept any liability to any third party. 

Information furnished by others, upon which all or portions of this report are based, is 
believed to be reliable but has not been independently verified, unless otherwise expressly 
indicated. Public information and industry and statistical data are from sources we deem to be 
reliable; however, we make no representation as to the accuracy or completeness of such 
information. The findings contained in this report may contain predictions based on current 
data and historical trends. Any such predictions are subject to inherent risks and uncertainties. 
NERA Economic Consulting accepts no responsibility for actual results or future events. 

The opinions expressed in this report are valid only for the purpose stated herein and as of the 
date of this report. No obligation is assumed to revise this report to reflect changes, events, or 
conditions, which occur subsequent to the date hereof. 

All decisions in connection with the implementation or use of advice or recommendations 
contained in this report are the sole responsibility of the client. This report does not represent 
investment advice nor does it provide an opinion regarding the fairness of any transaction to 
any and all parties. In addition, this report does not represent legal, medical, accounting, 
safety, or other specialized advice. For any such advice, NERA Economic Consulting 
recommends seeking and obtaining advice from a qualified professional. 
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