
RESPAresearch

Benchmarking Australian electricity distribution �rms:

reality, simulations and robustness

1 December 2015

RESPAresearch Pty. Ltd. | www.RESPAresearch.org | info@resparesearch.org | +612 6100 4330 | ABN 73 607 564 974



RESPAresearch

Contents

1 Context 6

1.1 The purpose of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The common partial cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical requirements 8

2.1 Background neoclassical production theory . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 No uncertainty in the production set for each �rm . . . . . . . . . . . . . . . . . . . 10

2.3 The production set of each �rm is feasible with costless movement . . . . . . . . . . 15

2.4 Physical capital use is optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 All �rms face the same input prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 All �rms have the same (or similar) production sets . . . . . . . . . . . . . . . . . . 26

3 Statistical assumptions 28

3.1 Estimated e�ciency scores re�ect actual �rm e�ciency . . . . . . . . . . . . . . . . 28

3.2 The distributions of error terms are correct . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Post-modelling adjustments and the frontier . . . . . . . . . . . . . . . . . . . . . . 36

4 Context of the interpretation 39

4.1 E�ciency estimates in other industries . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Uncertainty and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 The precautionary principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Interaction of model uncertainty and the precautionary principle . . . . . . . . . . . . 45

5 Recommendations of RESPAresearch 46

2



RESPAresearch

Disclaimer

The content of this report is provided for information purposes only. RESPAresearch has made every

attempt to ensure the accuracy and reliability of the information provided within this report, and

provides this report and associated �les in good faith, re�ecting the knowledge and expertise of the

author(s). RESPAresearch does not accept any liability or responsibility for any loss su�ered by any

person, stakeholder or organisation for the information, or the use of the information, provided in this

report or otherwise referenced by it. Nor does RESPAresearch accept any liability or responsibility

from the taking of any actions, or refraining from taking actions, as a result of reliance on this report

and associated �les.

The intent of this report, and others like it, is to inform stakeholders in major decisions about the

complexities of the economic and statistical models used; we have not been paid by any stakehold-

ers to produce this report. A discussion of the general principles and scienti�c approach used by

RESPAresearch can be found at www.RESPAresearch.org/#!principles/f7izx.
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Executive summary

This report, undertaken by RESPAresearch independent of any stakeholder, intends to bring to the

attention of all other stakeholders in the Victorian electricity distribution regulatory review process,

including the AER, issues of complexity, consistency and robustness implicit in the theoretical and

statistical assumptions underlying the operating expenditure benchmarking accepted by the AER.

Five implicit theoretical economic assumptions used in the operating expenditure benchmarking are

explored, and the e�ects of deviation simulated. These assumptions are: (i) certainty of all `tech-

nologies' and all input-output combinations; (ii) costless or low cost movement between any two

input-output combinations in the production set; (iii) optimal historical capital decisions; (iv) all

�rms face the same input prices; and (v) all �rms have the same production set.

These theoretical assumptions are discussed in light of evidence and reason, and where appropri-

ate, subject to simulation analysis within the neoclassical framework accepted by the AER. These

assumptions are found to be implausible for the following key reasons:

(i) Firms are composed of humans, and do not have the information processing capabilities of

being able to know with (even approximate) certainty, the input-output combinations from

using di�erent technologies. Knightian uncertainty, rather than risk, is the primary form of

uncertainty �rms face.

(ii) The movement to di�erent organisational structures is assumed zero in theory, but in reality, is

highly costly. This inconsistency has a signi�cant e�ect on the e�cacy of the theory, as �rms

cannot implement the results of that theory.

(iii) There is no basis for assuming that historical capital investments are, even approximately, op-

timal. Simulations show that �rms with capital stock drawn from a (uniformly distributed)

maximum deviation of ±10% from optimal, while having optimal operating inputs, have opex

ine�ciency estimates of up to 16 e�ciency percentage points; capital expenditure ine�ciency

is erroneously interpreted as operating expenditure ine�ciency.

(iv) The highly cautious use of evidence from the ABS shows that �rms in di�erent states face

di�erent labour costs, which di�er by over 5% from the mean. A simulation of �rms with uniform

random draws from a price range of ±5% from the mean, and optimal capital and operating

inputs, shows that the SFA model interprets price di�erences of some �rms as operating input

ine�ciencies of over 15%.

(v) Assuming all �rms have the same production set (so a single cost function can be estimated)

required the acceptance of one of two highly implausible assumptions (discussed in (ii)).

These assumptions are summarised in the following �gure.
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certainty of input-output combinations

uncertain certain

theory breaks down and the 
cost function estimate is 
theoretically meaningless

cost of movement to any 

point on the production set

large small/zero
theory breaks down as firms 
cannot optimise due to large 
cost to movements captial stock

non-optimal optimal

firms with capital above optimal-capital 
define the frontier and firms with capital below 
optimal-capital are erroneously deemed inefficient

input prices

different

firms facing different prices but operating optimally 
will be inappropriately interpreted as inefficient

historically inefficient choices

different

same for all firms

there is an implausible relationship with some of the 
assumptions above but more importantly, a single 
cost function will be inappropriate

same for all firms

theory potentially valid

Two main statistical assumptions are explored: (i) the statistically estimated e�ciency scores accu-

rately re�ect the e�ciencies of the �rms, and (ii) the distribution of the two error terms in the SFA

model are consistent with the observed empirical distributions. Simulations demonstrate that the �rst

assumption has 9% of �rms resulting in an e�ciency score over 10 e�ciency percentage points from

their actual e�ciency scores: this, and two related simulations, demonstrate the lack of robustness

of the application of the statistical method in these circumstances. The second assumption fails to

hold, however, the size of the e�ect is small; despite the small size of the e�ect, distributions with

heavier tails retained the large deviations of actual versus estimated e�ciency scores.

The theoretical and statistical issues with the model the AER has accepted demonstrate the model

is not as robust or reliable as previously thought. We further provide evidence from other industries,

some more competitive, which shows that a large range of e�ciency estimates is the norm rather

than the indication of an `ine�cient industry'. In addition to model robustness, model uncertainty

and the precautionary principle need to be properly accounted for in the interpretation of the model

results. We outline the model uncertainty present in the model accepted by the AER throughout this

report by discussing evidence from heterodox economists; we also show an appropriate (qualitative)

interpretation of the model results.

The implications of applying erroneous assumptions and models is not a theoretical exercise nor mere

semantics: there are signi�cant, real consequences for both �rms and customers which, in the theory

used, are assumed not to exist.
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1 Context

1.1 The purpose of this report

The Australian Energy Regulator (AER) has, in this round of electricity distribution reviews, chosen

to perform and rely on operating expenditure (opex) benchmarking − a form of e�ciency analysis

− to set the opex allowance for Victorian (and other Australian) electricity distribution �rms. The

AER has accepted the opex cost function analysis conducted by Economic Insights (EI) as robust,

reliable and reasonable [1]. The intent of this report is to bring to the attention of all stakeholders

in this regulatory process, including the AER, issues pertaining to the complexity, consistency and

robustness implicit in the accepted theoretical and statistical assumptions underlying the opex cost

function modelling and subsequent interpretation. This report quanti�es the e�ects of a number of

these assumptions through simulations (the value of which is discussed in Appendix 1).

Neoclassical economic theory, the theory accepted by the AER, has the underlying philosophical

assumption that it accurately or approximately re�ects reality. The approach taken in this report, in

analysing the assumptions underlying this neoclassical theory, is not one of discussing all neoclassical

and statistical assumptions and the plausibility of each: this would lead to an excessively long and

complex report. Rather, we have chosen to discuss the major issues necessary for accurate estimation

of the common neoclassical partial cost function accepted by the AER. The reason for this `issues-

based' approach is that the analysis accepted by the AER is the reference point; we do not have a

clean slate from which to conduct our own analysis.

This report frequently uses the subjective term `plausible'. This term is used to mean: that which

a scientist would �nd reasonably or approximately re�ects reality. The intent of this meaning is to

impose a reasonable viewpoint on any analysis. This report has been read and modi�ed in accordance

with such a scienti�c approach.1

1.2 The common partial cost function

The AER has accepted and applied the result of a common partial cost function using stochastic

frontier analysis (SFA) estimation [1]. In carrying out this analysis, a number of implicit assumptions

have been made. Section 2 of this report analyses the required theoretical assumptions needed to

accurately estimate such a common partial cost function, and Section 3 analyses the SFA model in

more detail.

The common partial cost function The AER has accepted an estimate of a single industry-wide

partial cost function. This cost function relates the price of a `unit of opex' (wi,t), four outputs

(ratcheted maximum demand, customer number, line length, and underground line length2: qi,t),

technique (Ai,t) and country-speci�c e�ects (Ci), to opex, for each �rm i at each time t. For the

1Details of the reviewing are documented in our `laboratory book' approach to analysis, as discussed at
www.RESPAresearch.org//#!constitution/rvp2t.

2Considering `underground line length' as an output is equivalent to the method EI has used, but allows for the more
natural interpretation as an output, rather than as an environmental variable. This can be seen by rearranging the
model (when written out in full), but can more intuitively be demonstrated by running the 20150728_RESPAre-
search_Replication_of_EI_results_and_distbn_analysis.R code (available on our website). The outputted �gure
shows EI's results alongside the results from this process: the results are numerically identical.
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discussion of the theory, the country dummy variables, Ci, will be ignored: this simpli�es the analysis

without changing any conclusions. The common (logged) partial cost function in question is:

ln(opexi,t) = β0 + β1 ln(RMDi,t) + β2 ln(custNumi,t) + β3 ln(lineLengthi,t) +

β4 ln(UGlengthi,t) + β5 ln(Pricei,t) + β6t (1.1)

where the only di�erence between this equation and that accepted by the AER [2] is the inclusion of

the country dummy variables and the two error terms.

The SFA estimation of the common partial cost function The SFA estimation of Eq. (1.1)

requires two error terms. To avoid any linguistic bias, these terms will be called the symmetric and

asymmetric error terms, denoted vi,t and ui respectively (the interpretation of these terms is discussed

in Section 3). These terms are added to Eq. (1.1) to give:

ln(opexi,t) = β0 + β1 ln(RMDi,t) + β2 ln(custNumi,t) + β3 ln(lineLengthi,t) +

β4 ln(UGlengthi,t) + β5 ln(Pricei,t) + β6t+ vi,t + ui (1.2)

This is now a statistical model which, with a number of further assumptions, can be estimated.
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2 Theoretical requirements

The AER has implicitly accepted the theoretical assumptions used in neoclassical production theory.

This section discussed these theoretical assumptions, and so the discussion remains largely within the

neoclassical realm. This neoclassical economic view of reality is the view taught in most undergraduate

and postgraduate courses, but it is by no means the only view in economics. Where appropriate in

this section, views and evidence from outside of neoclassical economics are provided; these views are

often unknown, ignored or overlooked. As far as is possible within human biases, this report does not

ignore nor discount such evidence without valid reasons.

2.1 Background neoclassical production theory

This report uses a production set as a primitive; this contrasts with EI, which uses a production

function as a primitive [2]. Using this set, two production functions are discussed: the ex ante

production function and the ex post production function. This distinction has signi�cant implications

for the theoretical plausibility of the model accepted by the AER.

De�nition. (production set) The production set of a �rm at a given point in time are all technolog-

ically possible combinations of physical inputs and physical outputs [3].3

This de�nition is a statement of how physical inputs are transformed into physical outputs: the cost

function uses dollar costs but necessarily maintains the assumption that a production set exists in the

background. The production set (more precisely, correspondence) can be depicted as a solid polygon

in Rm+n
+ space. (Figure 2.1 demonstrates and discusses this production set when one output and two

inputs are assumed.) The production set is a `black box' de�nition, in that there is no explanation of

how the set has, for example, arisen, how it changes, how it di�ers between �rms, how the properties

it possesses have originated; it is a primitive and simply assumed to exist [3].

3If there are m inputs and n outputs, then the production set can be denoted by Yi,t ⊂ Rm+n. This set can be
equivalently de�ned as a production correspondence, Y : Rm

+ → Rn
+.
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Figure 2.1:
This �gure is a stylised physical input-output correspondence. (The AER's estimate has one input and

four outputs, but in reality, for electricity distribution �rms, there are hundreds or thousands of inputs and

a handful of outputs.) The production set is the solid polygon de�ned by the area between the rainbow

curved surface and the input 1-input 2 plane. Given the input limits of inputs 1 and 2, shown at C and

A, respectively (for depiction clarity), the production set is the solid polygon de�ned by the four surfaces:

OADC (the rainbow curved surface), ABD, BCD and OABC. Every point within this solid is associated with

some combination of input 1 and input 2, some output (determined on the vertical axis), and some choice

of technique used to generate that output with those given inputs. A technique is the method of combining

inputs to produce outputs, and includes every idiosyncrasy of the �rm which a�ects the possibilities available.

The term `technology' is typically used instead of `technique', but this term has signi�cant linguistic bias

associated as its meaning in economics di�ers from its common meaning.

Suppose two (almost) identical �rms, �rm 1 and �rm 2, have both chosen to use the input combination

(x1, x2). Firm 1 uses a particular technique of combining inputs to produce output y0, and �rm 2 uses a

di�erent − and in this case optimal − technique to produce output y1. Firm 2 produces the highest level of

output possible from the inputs, given the current techniques available. The rainbow surface is the maximum

output a �rm can produce at each combination of inputs; it implicitly contains the optimal technique(s) of

combining inputs. This surface is the production function. The production function is the upper envelope of

all possible techniques for all levels of inputs. It does not necessarily represent a single technique: low levels

of output may use one technique, and higher levels of output may use another.

The production function is the maximum output that can be produced at any arbitrary input combina-

tion. The reason why a production function is assumed in neoclassical production theory is because no

`rational' �rm would produce at any point in the interior of the production set (i.e. below maximum).

The de�nition of the neoclassical production set uses the phrase `technologically possible', meaning

that a �rm is able to choose to operate at any point in this set. In this neoclassical realm, if a

�rm can costlessly choose any point in the production set and prices are given exogenously, a �rm

would choose the input combination that maximises pro�t. All �rms would choose to operate on the

production frontier (i.e. use the production function) as otherwise pro�ts would not be maximised.

There is result in neoclassical production theory which states that cost minimisation is a necessary

condition for pro�t maximisation [3]; that is, to maximise pro�ts, a �rm must be minimising costs.

This theorem de�nes a cost function which would minimise costs at every level of output; this is
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similar to the cost function estimated by EI. (A stylised cost function is depicted and discussed in

Figure 2.2.)

 co
st

output

E

y1

C1

cf(K0) cf(K1) cf(K2)

cf

Figure 2.2:
The cost function assumed within neoclassical production theory, cf , is the minimum cost of production at

any level of output. It gives the minimum cost required to produce a certain level of output (e.g. C1 is

required to produce y1 units of output). This cost function, cf , is the lower envelope of all the individual

`short run' cost functions.

The AER has applied the results of the cost function estimate, and has stated that these results are

consistent with the opex criteria in the National Electricity Rules (NER) [4, 5]. This acceptance

implies that �rms can actually change their input combination to achieve e�ciency, and thus must be

able to choose points on the production function. That is, all �rms are able to choose the physical

input-output combinations that minimise costs.

The remainder of this section discusses the plausibility of the implicit theoretical assumptions the AER

has accepted by estimating and using the common partial cost function.

2.2 No uncertainty in the production set for each �rm

Assumption Managers of each �rm, at any given time, know their production set with certainty.

This assumption can be weakened so that managers know a `neighbourhood' of the production set

around their current input-output points, including part of the `local' frontier relevant to their �rm.4

Context Within the neoclassical realm, under this assumption and some further technical (math-

ematical) assumptions, the �rm is be able to globally optimise.5 That is, the �rm must be able

to choose a point on the production frontier otherwise the stylised mathematisation of a �rm and

the subsequent optimisation breaks down. This assumption means that under all combinations and

organisations of di�erent levels of the inputs, including all di�erent levels of operating inputs from all

possibilities of the network architecture and capital choices, the outputs are known with certainty. A

4`Neighbourhood' and `local' are interpreted as the relevant part of the frontier for the �rm around the required,
exogenous level of output.

5The word `optimise' in neoclassical theory is in reference to mathematical optimisation, rather than the common
use of the word (such as when managers use the word). This distinction is required to avoid linguistic bias as the
intention and meaning of the word are quite di�erent.

10



RESPAresearch

weaker interpretation of this assumption is that managers know, or can costlessly know, with certainty,

the `local' space of input-output combinations, which must include part of the frontier at the same

or similar level of output.

This assumption is an informational assumption: �rm managers have perfect information regarding the

levels of output that can arise from the unimaginably large number of input combinations, organised

in an unimaginably large number of di�erent ways. An equivalent interpretation is that �rm managers

have perfect information processing capabilities. Even in the interpretation that full information is

`local', the requirement to be able to process an unimaginably large number of choices, choices which

may or may not lead to the `local' frontier, remains.

A reasonable assumption in this context is that risk preference should be common across managers

and should account for any uncertainty in �rms' production sets. This requires the production sets

to be the same across �rms (see Section 2.6), but more fundamentally, requires the uncertainty to

be classi�ed as risk. In neoclassical production theory, all uncertainty is risk. However, uncertainty

can be classi�ed into three types [6]: (i) risk is an uncertainty for which the outcomes are known,

and to which objective probabilities can be assigned (e.g. through historical experience); (ii) weak

Knightian uncertainty is where outcomes are known but to which objective probabilities cannot be

assigned;6 (iii) strong Knightian uncertainty is where some outcomes are themselves unknown, and

thus necessarily probabilities cannot be objectively assigned.7 Risk is the simplest form of uncertainty,

and the one assumed in neoclassical production theory, as it is mathematically tractable. The weak

form of Knightian uncertainty requires subjective probabilities be assigned to the outcomes, and

the strong form of Knightian uncertainty cannot assign even subjective probabilities since there are

unknown outcomes.

Implication(s) if the assumption does not hold If there exists uncertainty in knowledge of the

input-output combinations and the techniques used to produce those combinations, then neoclassical

pro�t optimisation breaks down, and so the theoretical relationship between the production set, pro�t

maximisation and cost minimisation breaks down. Thus the cost function estimate will bear little or

no relationship to what �rm managers can actually implement.

Reality Managers of �rms have limited, biased human processing capabilities, and information con-

straints, even in the weakened version of this assumption [7]. In reality, in any decision making

process, only a handful of scenarios are considered, and even these will su�er from subjective biases

and uncertainties. In the context of operations management, numerous textbooks and publications

advocate using the right tools for an uncertain environment, including decision analysis and scenario

planning (for example, [8]): this is how managers are taught to consider uncertainty in planning.

The `local' interpretation of this assumption still su�ers from imposing full information in a `local'

area. That is, full information is still required for managers to be able to know how to get to the

frontier (i.e. the techniques to employ). Recall that the production set is a `black box' de�nition: it

does not provide information of the `techniques' required to get to any point in the set. The de�nition

6Humans are generally biased statisticians without previous experience of events and without computational power;
this was researched extensively by Kahneman and Tversky (see, for example, [7]).

7[6] uses the term Knightian uncertainty for what we call `weak Knightian uncertainty' and `ignorance' for what we
call `strong Knightian uncertainty'.
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simply assumes �rms know, and have access to, the techniques to be able to produce any input-output

combination in the set.

It is worth noting that a slight movement in the production set does not imply a slight change in the

operation of a �rm (i.e. the `technique' chosen to combine inputs to produce outputs), as it may

require signi�cant reorganisation of inputs. This is a consequence of the production function being

the upper envelope of all techniques.

Box 1 presents a contrast to neoclassical production economics: it provides a summary of four case

studies of how �rms actually operate and actually make decisions. Two relevant �ndings are that

�rms do not operate as if they had a neoclassical production function, and managers attempt to avoid

(Knightian) uncertainty.

The risk preference of managers is not the main concern in decision making under uncertainty, as

managing a �rm is subject to all three forms of uncertainty. There are many instances which can

plausibly be categorised as risk within a business; there are also many which are more accurately

assigned Knightian uncertainty, either weak or strong:

...for investors, business folk, government o�cials, physicians, international diplomats,...risk

is an intriguing subject that bears little relation to the real decisions they face. Unknown

outcomes confront these players every day, and the probabilities are virtually never known

or knowable. Uncertainty, not risk, is the di�culty regularly before us. ...

More importantly, uncertainty characterizes much more of economic activity than does

risk. ... Risk is much less important than uncertainty [6]

A survey of 1000 Austrian entrepreneurs found that 41% view future sales, a simple and intuitive

variable, as most closely related to Knightian uncertainty [9]. Thus the argument that managers

should have equal risk preference is irrelevant. The existence of Knightian uncertainty, in either of

its forms, does not mean that, in reality, �rms cannot form strategies to reign in these forms of

uncertainty. However, formalising these problems remains generally intractable which is why they

are not considered in neoclassical production theory. In the main, these strategies are informal and

generally inconsistent with neoclassical production theory:

A decision maker should always be aware of the factor of [strong Knightian uncertainty]

and should try to draw inferences about its nature from the lessons taught by history,

from experiences recounted by others, from accounts given in the media, from possibilities

developed in literature, etc. [6]

This quote comes from the Handbook of the Economics of Risk and Uncertainty, written in 2014,

yet the study described in Box 1, published in 1963, makes similar, empirically founded claims related

to �rm decision making. This evidence has been around for more than half a century; it cannot be

overlooked or ignored, as it is how managers actually make decisions.

An issue related to uncertainty is the use of the production set; if �rms do not know it, then they

cannot use it. The human brain and the idiosyncratic nature of electricity distribution �rms, and

�rms in general, means that moving the operations of a �rm from one operational structure to a

di�erent one cannot be plausibly classi�ed as risk. The outcomes, in terms of possible outputs, may

be known but the probabilities assigned to each outcome cannot be assigned in an objective way:

there is no historical basis from which such probabilities can be assigned. The experiences of other
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�rms in di�erent economic, political and geographical climates, may provide some insight but any

assignment of probabilities will always remain subjective.

Even under the assumption that a �rm's managers can costlessly reorganise the entire set of inputs,

including how they relate to one another, it is not an inconsequential informational assumption that

management knows, or, through consultants, can know, the objective probabilities of the outputs the

�rms will attain from the unimaginably large number of possible combinations of inputs. Through the

case studies discussed in Box 1, managers in unregulated and signi�cantly more competitive industries

make decisions under uncertainty in similar ways.

The large opex reductions imposed by the AER on some �rms will necessitate major restructuring [10].

Restructuring an entire business due to an application of neoclassical economic theory, an `exogenous

shock' in economic diction, implies a signi�cant departure from `business as usual' heuristics, and

lies in the realm of decision making under Knightian uncertainty. Search for more e�cient structures

is likely to be undertaken but the neoclassical production function and neoclassical theory is likely

to play no role in how managers can, and do, respond. Closely related to this point is the issue of

application of a model under model uncertainty: this is discussed in Section 4.2.
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Box 1. A summary of A behavioural theory of the �rm [11]

This monograph is a behavioural case study and theoretical proposal of how actual �rms make de-

cisions, day-to-day and under uncommon circumstances. The motivation for this study was the

dissatisfaction with two facets of neoclassical theory: (i) the motivational and cognitive assumptions

made of the �rm seem unrealistic, and (ii) there were few similarities of the theory which could be

identi�ed with actual businesses. This study explains why there has been little success in merging

organisational theory (i.e. how �rms actually organise themselves) and neoclassical production theory.

This study takes the �rm as the basic unit, and looks at: (i) how organisational goals arise and

change; (ii) decisions on the timing of search and processing of information; (iii) how choices are

ordered and decisions made; and (iv) the relationship between decision and implementation.

The study is an in depth look at four major decisions within three �rms in the industries of man-

ufacturing and construction: accelerated renovation of old equipment, new working quarters for a

department with a doubtful future, selection of a consulting �rm, and choosing a data processing

system. The general �ndings were used to create the following sequence of events the �rms followed

in making decisions:

1. A �rm has multiple, dynamic acceptable goals. There is not a single pro�t-maximising goal for

all parts of the organisation and for all time.a The criterion for choosing goal(s) at any point

in time is one which best meets all goals of the coalitions within the �rm. These are goals of

the individuals within the �rm, and they too change depending on the environment.

2. The �rm undertakes an approximately sequential consideration of alternatives, with the �rst

satisfactory outcome chosen. When the existing policy (i.e. `business as usual') satis�es the

goal(s), little search is undertaken for alternatives; otherwise search is intensi�ed over time.

3. Firms attempt to avoid uncertainty by following historically successful procedures, relying on a

policy of feedback rather than forecasting the (uncertain) future environment.b

4. Firms follow standard operating procedures and heuristics to make choices, with these rules

dominating the decisions made in the short run. Standard operating procedures change over

time at varying rates depending on external shocks and internal motivations. The structure of

the standard operating procedure arising from the `general choice procedure' which the �rms

under study followed, can be summarised as: (i) minimise the need for predicting uncertain

future outcomes; (ii) maintain a feasible set of decision rules that are only abandoned under

duress; and (iii) maintain simple rules with some conditional �exibility.

The authors of this study also formalise this process, and provide a formal model of �rm decision

making and operation: the theory proposed in this monograph deviates signi�cantly from neoclassical

theory. A related monograph is [13] which discusses related aspects of how �rms make decisions.

aEven if there were a pro�t maximising goal, [12] provides a case study using managers in the National Football League
to see if optimal, pro�t maximising choices are made under situations more akin to risk, in a data-rich environment.
The analysis of decisions made by these highly paid managers (average income of $3mil), in a highly competitive
labour market (turnover of 20%), shows systematic, clear-cut, and overwhelmingly statistically signi�cant departures
from decisions which would maximise teams' pro�ts.

bThis uncertainty avoidance (or ambiguity aversion) is consistent with research conducted within behavioural eco-
nomics [14].
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Plausibility The assumption of zero or low uncertainty in the production set, if taken to re�ect

reality even approximately, is implausible.

2.3 The production set of each �rm is feasible with costless movement

The discussion in this section assumes managers have perfect information about the production set

(i.e. Section 2.2).

Assumption The production set of each �rm at each point in time consists of all feasible combi-

nations of inputs and outputs for which the movement between any two points in the set is costless.

This assumption can be weakened to `low cost' instead of costless, and to movement to the frontier

rather than between any two arbitrary points.

Context This assumption can be disaggregated into two implicit assumptions: (i) a �rm can actively

choose a di�erent technique with which to combine inputs to produce outputs, and (ii) the choice

to change techniques is costless. These implicit assumptions are necessary in neoclassical theory as

this theory is used to model how a �rm optimally operates, meaning all points in the production set

are feasible and have the same cost of implementation (typically zero). This theory is an ex ante

theory of production, where �rms choose inputs and technique de novo to produce outputs. For the

neoclassical theory to hold, the implicit assumptions, (i) and (ii), are mathematically necessary to be

able to ignore any initial input and technique `endowment' (i.e. the fact that a �rm currently exists,

and has a current form of operation). These two implicit assumptions remove any path dependency

in the historical choices of a �rm.

Recall that a `technique' is the way in which inputs are used to create outputs, and includes every

idiosyncrasy of a �rm's environment. A technique may be optimal at one point in time but be

superseded by a di�erent technique in the future. The choice and organisation of capital inputs is of

signi�cance: the choices of voltage levels, of capacities, of the physical architecture of the network, of

the choice of depots, of the historical labour contracts, are all choices which, in part, determine the

technique used to combine inputs to produce outputs. These historical choices are di�cult and costly

to reverse. If an electricity distribution network is to be on the frontier of the production set, it must

have made all historical choices, including the technique used, optimally. If a �rm has made ine�cient

historical decisions, for neoclassical theory to be retained, that �rm must be able to costlessly choose

di�erent inputs and a di�erent technique so as to be able to operate on the frontier of the production

set. In reference to Figure 2.1, these assumptions means that a �rm can move from point F to point

G by choosing a di�erent technique, and can do so costlessly.

It may be argued that in the economic long run, all factors of production are variable and so the

e�cient capital choices and organisation will be achieved by a competitive �rm, and so should be

achieved by a regulated �rm.8 This argument relies on the production set being stationary over time,

but more importantly, on the ability of a �rm to entirely redesign the interaction between inputs.

An alternative to the strict application of neoclassical theory is the view that the production set

is an ex post production set. That is, as de�ning all input-output combinations which, given the

8It must be noted that empirical estimates of e�ciency in signi�cantly more competitive industries have a wide range:
this is discussed in Section 4.1.
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historical path of capital and technique choices, can be implemented costlessly or at low cost. This

interpretation would maintain consistency with neoclassical production theory.

Implication(s) if the assumption does not hold The optimisation used in the neoclassical theory

ignores any signi�cant costs, or barriers, to moving between points in the production set. If such

costs do exist and are prohibitively large, then any `optimal' theoretical results would be inconsistent

with cost-feasible options available to the �rm.

Reality In each time period, �rms do not make the choice of inputs, technique and outputs de

novo: a �rm does not face an ex ante production set, but rather faces an ex post production set − a

production set in which history has locked in constraints, such as voltage levels, network design and

architecture, etc. As [15] notes:

[W]ith regard to the time dimension...in the study of the production process a funda-

mental distinction must be made between ex-ante analysis and ex-post analysis. ...

[E ]x-ante analysis corresponds to a `plan' of the production process, on the basis

of given hypotheses on agents' behaviour and market structure, assuming as given the

availability of inputs. ...

By contrast, ex-post analysis aims to elucidate the productive characteristics of a given

process actually in operation.

Existing �rms re�ect the constraints of history in their production sets. Assuming that �rms can

change their techniques in a costless way is contrary to the historical choices of long-lived capital

of electricity distribution �rms, choices made decades ago via likely ine�cient and ad hoc practices.

Even labour contracts have a historical path dependence, with any changes being potentially costly.

A network with such historical ine�ciencies would be unlikely, at the current time, to be able to reach

the frontier unless inputs could be entirely redesigned and renegotiated in an optimal way (a likely

high-cost process).

To maintain the neoclassical framework, the production set needs to be interpreted as a costless (or

low cost), ex post production set, one that takes into account the costs associated with movement

within this set.9 Figure 2.3 demonstrates and discusses a realistic interpretation of a production set

while remaining within the neoclassical framework. Under this interpretation, the production function

de�ned by this production set is one that a �rm can actually achieve at low cost, and is not simply a

theoretically `possible' production function.

9A possible interpretation of `low cost' may be the net present value of bene�ts to consumers of the use of a redesigned
organisation, relative to the current organisation.
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Figure 2.3:
The ex post production set is the set of input-output combinations that a �rm can costlessly (or with low cost)

choose to operate within. This set takes into account costly-to-reverse historical decisions. It is implausible

to assume coincidence of this ex post production function with the relevant part of the current ex ante

production function, since this would require historical decisions to coincide with the decision which would

be optimal at the current point in time. In this stylised �gure, for any costless ex post input combination

(i.e. any point in the red polygon, ABCD), the green surface is the maximum this �rm can produce given

the historical constraints. The ex post costless production set is the solid polygon de�ned by the green

surface and the red polygon ABCD, which de�nes the feasible inputs (e.g. some inputs are required due to

contracting, etc.).

If a network has costly-to-reverse historical technical ine�ciencies, as is reasonable to expect in reality,

to achieve a certain level of output, relative to the ex ante production set, a greater use of inputs

is necessary. This is a necessity arising from the neoclassical theory of production, and is discussed

further in Section 2.4.10

The argument that the optimal design will emerge in the long run is a blind application of an eco-

nomic de�nition to a situation unlikely to warrant its use. It is highly implausible that an electricity

distribution �rm would ever reach a point in time where it would choose to redesign its entire network.

Decisions are always made in the short run with some factors of production �xed; decisions related

to capital are always dependent on existing capital and designs (i.e. the long run is in�nite). The

capital in electricity distribution is long-lived in nature, and the replacement cycles of di�erent capital

10This contrasts to the way the AER has used the theory [4]:

If the [distribution �rm] entered into a long term ine�cient contract, we would be required to include
the associated costs in our forecast. These decisions are not part of our role and such an approach would
be contrary to the incentive basis for the regulatory regime.

The AER does not take into account any historical ine�cient decisions, and therefore has assumed an ex ante
production function.
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is staggered due to di�erent economic lives. Thus the argument that in the long run a �rm will tend

to the e�cient design is invalid.

The AER has implicitly assumed costless movement in the production set by accepting the cost

function estimate, while at the same time being unconcerned about the cost of transition to a more

e�cient level of production [16]. This apparent contradiction is of concern, and is why we have taken

the initiative to inform stakeholders of such inconsistent assumptions.

Plausibility It is highly implausible to expect a �rm to costlessly (or at low cost) redesign its network

in an optimal way. It is, however, plausible to interpret the production set as a low cost, ex post

neoclassical production set.

2.4 Physical capital use is optimal

The discussion in this section assumes managers have perfect information about a production set in

which movement between any point and the frontier is costless (i.e. Sections 2.2 and 2.3).

Assumption Given identical exogenous prices faced by all �rms, all physical capital inputs are at a

level that, if a �rm were to make optimal decisions re�ecting all inputs, that level of physical capital

would be optimal.

Context The ability to accurately estimate a partial cost function requires an assumption on the

factors of production excluded from the analysis. This assumption, in the context of excluding the

whole range of physical capital goods, is that those capital goods are assumed to be at their optimal

level. This assumption is not often used in economic analysis, and has been implicitly chosen by EI in

their approach [2]. The reason for this assumption seems to be that the AER desired to pursue, and

have regard to, economic benchmarking of opex, as allowed under the NER [17]. This assumption is

not based on neoclassical economic theory or evidence, but rather seems to be an arti�cial constraint

chosen by EI arising from their preference for partial cost function benchmarking.

This imposition of optimal physical capital assumes away any capital ine�ciency, in terms of quantity,

organisation and interaction with all other inputs, when evaluated at the optimal level of all inputs −
this includes at the level of the optimal operating inputs. Figure 2.4 demonstrates and discusses the

theoretical context implied by this assumption in a stylised setting, and demonstrates how historical

di�cult-to-reverse choices can a�ect the estimation and interpretation of e�ciency estimates. This

�gure and analysis assumes substitutability between capital and operating inputs, as accepted by the

AER [18].11

11The discussion in this �gure relies on an understanding of neoclassical economics taught at the undergraduate level
(see for example, [19]).
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Figure 2.4:
(a) This is a stylised example with only two physical inputs: capital input and operating input. The assumption of

optimal capital means that each �rm operates at the optimal level of physical capital, requiring the �rm to be on the

frontier of the production set and optimising relative to prevailing prices: this level is denoted Koptimal. At Koptimal,

the optimal quantity of operating inputs is Ooptimal. If the production function is accurately estimated, then this is

the level to which e�ciency comparisons are made. Consider two �rms, 1 and 2: �rm 1 has lower than optimal capital,

at K1. It chooses optimal operating inputs given prevailing prices (i.e. at B). Relative to the optimal cost function,

capital ine�ciency will be incorrectly viewed as operating input ine�ciency: the quantity of operating inputs CA will

be viewed as ine�cient, despite the �rm being perfectly e�cient given historical capital choices. In contrast, �rm 2

has higher than optimal capital, at K2, and chooses optimal operating inputs, O2. In this case, capital ine�ciency

will be interpreted as operating e�ciency: the quantity of operating input ED will be interpreted as a �rm being a

`frontier' �rm since it is using fewer operating inputs. Suppose these two �rms were data points in an econometric

estimation. Since both �rms are producing the same output, but �rm 1 has signi�cantly higher (but still e�cient)

operating costs than the �rm 2, then �rm 1 will be incorrectly interpreted as being ine�cient. The issue is that the

data is inconsistent with the assumptions, thus the theory, and subsequent interpretation, is distorted.

(b) This �gure is a modi�cation of Figure 5.D.7 of [3]. These cost functions each re�ect the level of �xed

capital inputs. Both �rms in (a) seek to produce y0 units of output, so the optimal capital would be Koptimal,

however, capital is di�cult to change. Instead, the �rm with lower capital requires higher operating inputs, while the

�rm with higher capital requires lower physical operating input. The cost BD is the net additional cost to the �rm

with higher than optimal capital, but lower than optimal operating inputs. Similarly, AD is the net additional cost to

the �rm using lower than optimal capital but with higher than optimal operating inputs.

The optimal cost function is the bold line: this is the object in want of estimation. If all �rms have optimal capital

stock, then all e�cient �rms will operate on this line, and all �rms with ine�cient operating input levels will operate

above it. Data generated in this way would be consistent with the estimation accepted by the AER. However, if

the �rms do not have optimal capital inputs, then the data will be above this optimal cost function and the level of

operating input ine�ciency will not be able to be distinguished from capital ine�ciency. In fact, the case shown in

this �gure is plausible, where two similar �rms with similar outputs have signi�cantly di�erent operating input costs,

despite both using those operating inputs perfectly e�ciently given their historical, di�cult-to-reverse capital choices.

It is a simple extension of this framework to demonstrate that a �rm can produce more output with less operating

inputs than another �rm, despite both �rms being e�cient conditional on their historical, costly-to-reverse choices.

(This is a plausible explanation of the large dispersion of the Partial Performance Indicators and Category Analysis

used by the AER.)
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Implication(s) if the assumption does not hold If �rms are not using the optimal level of

capital, then the data used in estimating operating input e�ciency will contain levels of both capital

and operating input ine�ciency leading to distorted and inappropriate comparisons between �rms,

and so comparison of e�ciency scores will not re�ect reality.

Reality Decisions about physical operating inputs and changes to capital inputs are generally made

at the same level of management within a �rm. Capital inputs are a result of multiple prior and

current management teams making decisions, and are di�cult to reverse, whereas operating inputs

are less di�cult to change but still possess, to a lesser degree, decisions made by prior management

teams. Historical capital input and organisation (i.e. `technique') decisions were made in the past

by management in an environment likely containing less information than is currently available. It is

thus unlikely to be e�cient.

The assumption of optimal capital requires that all �rms be perfectly e�cient in a major area of

operations (highly dependent on past decisions), while concurrently being potentially ine�cient in

another major area of operations. This is a highly unrealistic assumption required to ensure the

mathematics of neoclassical production theory is consistent rather than being based on how �rms

operate, or any other evidence. It is even more unlikely that the historically chosen and organised

factors of production, factors a �rm cannot easily change at low cost, are perfectly e�cient while the

factors of production that a �rm is able to change relatively easily are subject to ine�ciency. It is

unreasonable that, for example, optimal subtransmission voltages are di�erent in di�erent jurisdictions,

yet this is the implicit assumption necessary to retain the validity of the theory. This is but one example

where there are di�erences in historical capital choices across �rms, all of which are implicitly assumed

to be optimal for these �rms.12

The model accepted by the AER includes circuit length, underground line length, customer numbers

and ratcheted maximum demand: these are poor proxies for either (i) the di�erent types of capital

di�erent �rms use, which is the idea discussed in Figure 2.4, extended to hundreds, possibly thousands,

of dimensions to account for the di�erent observed capital choices of �rms (e.g. the historical

voltage level choices to which �rms are locked into), and (ii) any aggregate of the capital stock,

as the Cambridge capital controversies essentially showed that aggregation of capital has critical

consequences to maintaining neoclassical production theory.

Simulation We have conducted simulation analysis of how capital ine�ciency can be invalidly

interpreted as operating ine�ciency in cost function estimates. This simulation assumes 1000 �rms

operating using two inputs (capital input and operating input) with a common constant returns to

scale Cobb-Douglas production function, each with an output requirement chosen randomly from the

interval [1, 100]. The price of both operating and capital inputs is set to 1. Given the output of

each �rm and the relative price, optimal capital is determined and then set to be a random value in

the interval [0.9 × optimal capital, 1.1 × optimal capital], i.e. a maximum of ±10% away from

12A note is required here that the AER also made adjustments to the capital expenditure of some electricity networks in
their April 2015 decisions [1]. This is somewhat inconsistent with the assumption made in this operating expenditure
benchmarking analysis that �rms make optimal capital choices. If the AER is to be consistent with this assumption,
it requires the �rm to have made, and likely to make, optimal capital choices. Consistency with this assumption
has a signi�cant e�ect on any capital expenditure proposed by these same �rms.
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the optimal capital level, uniformly distributed. Given this non-optimal capital and the relative price,

the optimal level of operating input is determined (as in Figure 2.4). The operating costs are then

calculated for each �rm. This process gives the operating input cost and physical output data for all

�rms. The SFA model, similar to that accepted by the AER, is run and the corresponding e�ciency

analysis conducted. These e�ciency results are shown and discussed in Figure 2.5.13

----

difference between actual and estimated efficiency scores

Figure 2.5:
This �gure shows a typical histogram of the di�erence between the actual operating e�ciency of the �rm

− all �rms are perfectly e�cient in operating inputs, by construction − and the estimated operating input

e�ciency in the presence of capital ine�ciency. The median �rm is typically within 0.5% of the optimal level

of capital, the maximum deviation from the optimal capital of any �rm is less than 10%, and all �rms have

perfectly e�cient levels of operating inputs given their respective capital ine�ciency. The di�erence between

actual and estimated e�ciency gives a non-trivial range, typically around [−18.2, 0]. As expected given the

discussion in Figure 2.4, all �rms with capital above the optimal level have e�ciency scores deviations above

the median deviation, and all �rms with levels of capital below the optimal amount have e�ciency score

deviations below the median deviation.

In the SFA analysis, �rms with higher than optimal-capital de�ne the `frontier' of the cost function, which is

then erroneously re�ected in those �rms with less than optimal-capital as operating input ine�ciency: that

is, capital ine�ciency of one �rm a�ects the operating input e�ciency estimates of other �rms.

These results are robust to changes in the range of output required by the 1000 �rms, and to the distribution

of the output requirements of those �rms (results not shown).

The code for this simulation is available online as 20150728_RESPAre-

search_Non_optimal_capital_and_di�erent_prices.R.

The lessons in application from this simple simulation are: (i) capital ine�ciencies − both higher and

lower than optimal capital stocks − have a signi�cant e�ect on the statistical estimation of operating

input e�ciency levels, even if operating input choices are perfectly optimal given the capital stock;

and (ii) a property of the median or mean �rm (in this case, optimal capital) ignores the issue that

the distribution of that property matters, and that this distribution may have a signi�cant e�ect on

the estimation of e�ciency scores.

13Note that there is no measurement (`symmetric') error, and that all reported operating input ine�ciencies are not
operating ine�ciencies at all; rather, they are capital ine�ciencies resulting from ine�cient historical choices.

21



RESPAresearch

Plausibility It is implausible to assume that, in reality, �rms have made historically optimal capital

choices. In the AER's use of the results, �ve out of 13 �rms are over 40% ine�cient in operating

input costs (i.e. operating inputs can be reduced by 40% without changing output) yet these same

�rms are assumed to be 0% ine�cient in their use of capital inputs. This result is highly unreasonable.

There is no evidence for this assumption and it seems to be imposed to retain neoclassical economic

theory without modi�cation. Further, assuming perfect capital e�ciency is likely to inappropriately

attribute historical physical capital input ine�ciencies to current physical operating input e�ciency

estimates.

2.5 All �rms face the same input prices

To remain within the neoclassical framework, the discussion in this section assumes managers have

perfect information about a production set in which movements between any point and the frontier

are costless, and all �rms have optimal capital (i.e. Sections 2.2 to 2.4).

Assumption All �rms face the same, or very similar, input prices.

Context Firms are assumed to face the same input prices so that two �rms with the same output

requirements would choose the same inputs and so have the same costs. This assumption is e�ectively

assuming all input markets are perfectly competitive with no imperfections, such as transport costs

or geographic labour preferences, the purpose of which is to make the modelling mathematically

tractable.

Within the neoclassical realm, if two identical �rms faced di�erent input prices, then their cost

functions would also be di�erent, even under optimal capital choices. Consider the simple case where

a �rm faces input prices 5% higher than that of another �rm: the cost function would then be 5%

higher for that �rm, and so the resultant estimate of a single common cost function would incorrectly

�nd that �rm ine�cient. This idea is extended and discussed in Figure 2.6. As the AER has accepted

a single industry-wide cost function, the possibility of di�erent �rms facing di�erent input costs and

thus having di�erent cost functions is, by assumption, excluded.
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Figure 2.6:
(a) This �gure shows the result when di�erent �rms face di�erent relative prices. Firm 1 has output

requirement y1, and the relative price it faces means that the optimal quantity of operating outputs is

O1. In contrast, �rm 2 has output requirement y2 which is larger than y1, but faces a di�erent relative

price. At this relative price, the optimal choice of operating inputs for �rm 2 is O2. If only operating input

was to be analysed (and prices assumed to be the same for both �rms), then �rm 1 would seem to be

interpreted as being ine�cient as it produces less output at the same level of operating input, relative to �rm 2.

(b) This �gure shows one possibility of di�erent cost functions, dependent on the magnitudes of the

absolute and relative price di�erences. In (a), �rm 1 faced a lower relative price for operating inputs (and so

used more of those inputs) but the absolute price may have been higher than that of �rm 2. This would result

in a cost function above that of �rm 2 (as in this �gure). The precise di�erences in absolute and relative

prices will determine the precise nature of the di�erences in the cost functions the �rms face: they could be

as shown in this �gure, with di�erent slopes, or reversed, or intersecting.

If input prices di�er (in absolute terms) across �rms, then di�erent �rms will face di�erent cost functions,

and so estimating a single cost function will unfairly interpret price di�erences as ine�ciencies.

Implication(s) if the assumption does not hold If di�erent �rms face di�erent input costs,

relative or absolute, then they will also face di�erent cost functions; estimation of a single cost

function will inappropriately interpret price di�erences as ine�ciencies.

Reality Perfectly competitive markets are an academic economic abstraction; they are rarely, if ever,

encountered in reality. This is especially true for labour markets. For any speci�c type of labour,

wages di�er signi�cantly across geographical regions and individual skills, and depend in part on the

geographic preferences of individuals, the availability of skilled labour, individual �rm practices, etc.

Labour markets are slow to react, with wages sticky for common sense reasons [20]: it is a strong

assumption to make that such a market clears at a single wage across di�erent states.

Under the strong aggregation assumption of a single labour market for all di�erent labour inputs in

the electricity distribution industry, the AER has in the past, and even in the latest determinations

for NSW and ACT �rms, set di�erent labour cost escalators, and thus accepted di�erences in future

labour costs [21]: this is not an unreasonable nor an unrealistic course of action taken by the AER.
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In the latest cost escalation estimates, even if we implausibly assume absolute prices in the base year

are the same, the AER has still accepted that there will be labour cost di�erences between NSW

and the ACT in the range of [0.70%, 0.97%]. Figure 2.7 shows and discusses in detail di�erences in

earnings between the states and territories in the National Electricity Market (NEM). Despite the

publicly available data not being ideal, we have accounted for much of this in our analysis: the details

are discussed in Figure 2.7.

Figure 2.7:
This analysis uses data from the ABS on average weekly earnings (AWE ) across Australian states and

territories [22]. Three related but di�erent data sets are used to choose the one that provides a minimum

range (i.e. cautionary use of the data). The three data sets used are: adult non-manager AWE, adult AWE,

and full time private sector AWE. The data includes standard errors for each state/territory. A deviation of

two standard errors is taken in both directions from the estimated AWE, and then a program �nds the point

within these intervals for each state/territory that minimises the sum of the absolute percentage deviation

from the mean AWE of the relevant sample. This is done to, again, be cautious in the use of the data.

States/territories not in the NEM are excluded resulting in an even smaller range, meaning an even more

cautious approach. Despite all these precautions, these results show that labour costs do vary between

states/territories in the NEM. The intersection of the ranges of the three data sets, in percentage deviation

from the mean, is [−8.20, 5.64]; the intersection is taken so as to be even more conservative in the use of the

data.

The AWE survey data is, in this context, used to measure the average level of earnings between Australian

states and territories. This data is not perfect, and has the drawback of being a�ected by both the level

of earnings per employee and the composition of the labour force in each state/territory [23]. Despite this

drawback, this data, especially when used cautiously as described above, does provide insight into di�erences

in dollar earnings, and thus di�erences in dollar labour costs across states/territories. This is a deviation from

neoclassical production theory; the impact of this deviation is explored through simulations below.

The code used for this analysis is available online as 20150728_RESPAre-

search_Cautious_analysis_of_AWE_data.R.

Labour costs are but a single example where the costs di�er across states/territories, with the price

of other operating inputs in need of analysis. However, as stated by the AER, labour costs are in

the range of around 70-80% of operating costs [24]. It is unrealistic to assume that the price of

other operating inputs are the same across geographical regions when the presence of local market

idiosyncracies, transport costs, etc. exist. These deviations can add up to produce a signi�cant e�ect

on this analysis.
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Simulation Through simulation analysis, we explore the e�ects of di�erences in input prices, a

deviation from neoclassical theory, on the e�ciency estimates of �rms in a controlled in silico envi-

ronment. This simulation is identical to that in Section 2.4 with the following exceptions: capital is

now assumed to be optimal and the price of the operating input is idiosyncratic for each �rm at a

random (uniform) value in the interval [0.95, 1.05]. This interval was chosen as it is a conservative

choice given the analysis in Figure 2.7. The histogram of the e�ciency scores are shown, along with

a discussion, in Figure 2.8(a).

--

difference between actual and estimated efficiency scores

-

(a) (b)

Figure 2.8:
(a) This �gure shows the histogram of the di�erence between actual and measured operating input cost

e�ciency levels when both capital inputs and operating inputs are optimal but when �rms face di�erent

operating input prices. The simulated price is in the interval [0.95, 1.05], yet the di�erence between actual

and estimated e�ciency has a larger range, typically around [−14, 0]. This demonstrates that di�erences in

relative prices between �rms, even assuming all else in the neoclassical world holds perfectly, have signi�cant

e�ects on the estimation of �rm e�ciency levels.

(b) This �gure shows the e�ects of adjusting the opex of only Australian �rms by the conservative

estimate of (private sector) AWE di�erences between states/territories in the NEM (i.e. from Figure 2.7).
The dark bars are those accepted by the AER and the light bars are those adjusted for price di�erences

between the states in the NEM. Issues remain with this estimation, including the fact that the costs of

overseas �rms have not been adjusted for internal jurisdictional di�erences, and that these �rms largely de�ne

the frontier. Despite this and other issues, this �gure can still provide some qualitative insight into the e�ect

of price di�erences; the range of e�ciency score di�erences (approximately [−6, 4] e�ciency percentage

points), relative to those accepted by the AER, are not negligible.

The code for this simulation is available with this report as 20150728_RES-

PAresearch_Non_optimal_capital_and_di�erent_prices.R and 20150811_RESPAre-

search_Benchmarking_data_for_R_accounting_for_price.csv.

We have also applied the prices in Figure 2.7 to the states/territories in the NEM, and then rerun the

model accepted by the AER; this is shown and discussed in Figure 2.8(b). This process is not ideal

for a number of reasons: labour is not the only opex cost; the `local' price of each individual �rms

is unknown (i.e. how the prices di�er within states); the interaction of the prices with other issues

such as capital stock, and key to this particular case, the labour prices in New Zealand and Ontario

are assumed to be the same for all �rms within those jurisdictions − this is unsatisfactory as these
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jurisdictions form the majority of the data set, and so the frontier will be largely unchanged relative

to the estimates the AER has accepted. This estimation, however, does provide a qualitative and

cautious indication of the extent to which the e�ciency scores are a�ected.

Plausibility Given the evidence of di�erences in labour costs, and the simulation results within the

neoclassical world showing that small deviations in price have a non-trivial e�ect on e�ciency score

estimates, it is implausible that this assumption holds.

2.6 All �rms have the same (or similar) production sets

For consistency with neoclassical theory, the discussion in this section assumes managers have perfect

information, have made optimal capital decisions, and face the same input prices (i.e. Sections 2.2,

2.4 and 2.5).

Assumption To be able to estimate a single cost function re�ective of the cost functions faced

by all �rms, all �rms need to have the same, or very similar, production sets. This is so that the

estimated cost function re�ects each �rm, and each �rm can physically implement the results of the

e�ciency analysis (i.e. they can choose a point on the frontier).

Context This assumption is implicit in the AER accepting the estimation of a single, common cost

function, and the setting of operating expenditure based on that cost function. There are two main

reasons for this assumption: (i) there is not enough data to be able to measure the production set

for each �rm separately; but more importantly (ii) the intended purpose of the analysis undertaken

for the AER is to benchmark the operating expenditure of Australian �rms [2], so �rms necessarily

need to be compared to one another. This second reason is the presumed driving force for the entire

analysis.

Implication(s) if the assumption does not hold If �rms have di�erent production sets resulting

in di�erent cost functions, then the estimation of a single cost function is not re�ective of the possible

input-output combinations �rms face, and so the foundation of the analysis is undermined, meaning

the e�ciency results may be spurious and thus unreliable.

Reality The assumption of a common production set is closely related to the interpretation of a

production set discussed in Section 2.3. Recall that the production set contains, by de�nition, the

individual exogenous heterogeneities of a �rm in a particular geographical and political jurisdiction. In

reality �rms face di�erent constraints: some arising from historical decisions, some from the physical

environment, some from the political or socioeconomic environment, and some even from customer

preferences. These di�erences are, within the neoclassical world, encapsulated within a �rm's produc-

tion set. Assuming a single production set for all �rms assumes away every di�erence between the

�rms.14 It is these di�erences which makes the ex ante production sets of di�erent �rms di�erent;

how di�erent is a non-trivial empirical question. It might be assumed that the ex ante production sets

14The argument that these di�erences are accounted for post-modelling is discussed in Section 3.3.
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are similar for similar regions, but it needs to be recalled from Section 2.3 that it is highly implausible

that �rms actually have access to, and use, the ex ante production set.

On the other hand and as discussed in Section 2.3, the production set can be interpreted as an ex post

costless production set; this is a plausible interpretation. However, this production set is dependent

on historical choices of individual �rms, for which it is implausible to assume that �rms have made

the same or similarly ine�cient choices in the past. The assumption that �rms have, on average,

made the same ine�cient historical choices is without basis and evidence. Even if this were true, it

was demonstrated by simulation in Sections 2.4 and 2.5 that the distribution of ine�cient choices is

of relevance to e�ciency analysis, not simply the mean or median choice.

Plausibility This assumption relies on one of two implausible paths − the ex ante production set,

or all historical choices have been equally ine�cient for all �rms − depending on the interpretation

of the production set. In either case, it is implausible.
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3 Statistical assumptions

To be able to discuss the statistical SFA model accepted and used by the AER, the assumptions set

out in Section 2 must be taken to be true, despite their cumulative implausibility. The SFA model

accepted by the AER can be speci�ed as the following econometric model:

ln(opexi,t) = β0 + β1 ln(RMDi,t) + β2 ln(custNumi,t) + β3 ln(lineLengthi,t) + β4 ln(UGlengthi,t) +

β5 ln(Pricei,t) + β6t+ β71NZ + β81Ont + vi,t + ui (3.1)

where vi,t is the symmetric error term and ui the asymmetric error term. We have replicated the

analysis undertaken for the AER from �rst principles.15 The analysis in this section looks at two facets

of the statistical model used: whether the e�ciency estimates accurately re�ect the `actual' e�ciency

of �rms, and whether the distributional assumptions have an e�ect on the e�ciency estimates. That

is, the two questions we are asking are: (i) given a �rm has an `actual' e�ciency level (which in the

following simulations, we impose by construction), what is the distribution of the di�erence of the

actual from the estimated e�ciency?; and (ii) does changing the `actual' distributions of the two error

terms a�ect the distribution of e�ciency estimates? These questions are answered via simulations.

3.1 Estimated e�ciency scores re�ect actual �rm e�ciency

Assumption The di�erence between the estimated e�ciency and the actual e�ciency is negligible,

so the estimated e�ciency score accurately re�ects the actual e�ciency of a �rm.

Context This assumption is required to be able to draw a reliable inference from the estimated

e�ciency scores. The AER has drawn such inference and thus has accepted this assumption.

Implication(s) if the assumption does not hold If this assumption does not hold, then any

inference from this statistical model may be unacceptably biased.

Reality The di�erence between actual e�ciency and estimated e�ciency can never be known in

reality. This does not mean that inference can be assumed to be appropriate, nor that it cannot be

shown to be inappropriate. Instead, the size of this di�erence can be estimated via simulation. In

fact, the simulation in Section 3.2 is how this di�erence was observed, but its magnitude warranted

a discussion of its own.

Simulation In the following statistical simulation, we suppose Eq. (3.1) is the true underlying

data generating process (DGP) where vi,t ∼ N (0, σ2V ) and ui ∼
∣∣N (µ, σ2U )

∣∣ (N is the normal

distribution, and |·| is the truncation at zero of the positive part of the distribution in question),

and the parameter values estimated by EI to be the true values. Data is then generated by random

sampling from the two distribution (assumed to be the true distributions in this simulation). Using

15Our code demonstrates that the two models − Eq. (3.1) and the model in Table 5.2 in [2]
− produce identical e�ciency results, as discussed in Footnote 2. This �le, 20150728_RESPAre-
search_Replication_of_EI_results_and_distbn_analysis.R, is available on our website.
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the draws from the asymmetric distribution, actual e�ciencies of the simulated �rms are known with

certainty. The draws from the two distributions, along with actual output data used in EI's model

(i.e. the independent variables in the regression), are used to determine `simulated opex' values (i.e.

the dependent variable). At this point, we split the simulation into two parts:

(i) We use the (known) parameters to calculate the estimated e�ciency scores, as per the latter part

of the SFA model accepted by the AER, and compare this to the actual e�ciency of each of

the �rms: this di�erence is the variable of interest in determining if this assumption holds. This

proceeds without estimation of the parameters, and provides insight into the robustness of the

model given perfect estimates.

(ii) We use the simulated data to estimate the parameters using the entire SFA procedure accepted

by the AER, which is then used to determine the total e�ect on e�ciency scores in a setting

akin to that accepted by the AER. The di�erence between the actual e�ciency and estimated

e�ciency is then calculated.

In either part, this process generates 68 data points of di�erences between actual and estimated

e�ciency scores − one for each �rm in the sample. This is repeated a number of times to generate

a sample of over 10,000 simulated di�erences. These 10,000 data points are plotted as a histogram,

and discussed, in Figure 3.1(a).
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Figure 3.1:
(a) This histogram shows the deviation of actual e�ciency from the estimated e�ciency score when the

assumptions of the model are known to hold (this is by construction). A wide range of di�erences between

actual and estimated e�ciency is observed; this di�erence may be centred at a mean of approximately zero,

but a non-trivial number of �rms (over 9%) have a deviation of over 10 e�ciency percentage points from their

true e�ciency. A similar measure is the 95% empirical con�dence interval: this is approximately [−12.8, 10.7]
e�ciency percentage points. This large deviation of actual versus estimated values is a general issue inherent

in statistics; statistics is used to �nd general regularities and relationships rather than properties of individual

data points.

(b) This �gure shows the comparison of both the simulation with perfectly known parameters (red)

and the simulation with estimated parameters (black − this is the same data as (a)) plotted as empirical

cumulative distribution functions (ecdf). There are a couple of interesting features: �rst, perfectly estimated

parameters do not result in the di�erence between actual and estimated e�ciency being zero − the 95%

con�dence interval is approximately [−3.7, 4.4]. Secondly, estimation of the parameters of the model, using

544 data points, the same number as accepted by the AER, produces vastly increased uncertainty relative

to the perfectly known parameters, as shown by the increase in the 95% empirical con�dence interval (i.e.

[−12.8, 10.7]). This demonstrates that the sample size is insu�cient to produce approximately accurate

e�ciency estimates − that is, the size of the 95% empricial con�dence interval has increased by over 15

e�ciency percentage points due to imperfectly estimated parameters.

The code for this simulation is available online as 20150729_RESPAre-

search_Statistical_assumptions_changed_parameters.R.

In a simulated setting, where the error terms are drawn from known distributions, with a sample

size identical to that accepted by the AER, the 95% con�dence interval had length 23.5 e�ciency

percentage points. This result follows the same process as that accepted by the AER, in that the

underlying parameters must be estimated, rather than are known ex ante.

A third simulation has been used to investigate the size of the 95% con�dence interval under reasonable

di�erences in the true underlying values of the three distributional parameters: µ, σ2V and σ2U . This

simulation provides insight into the sensitivity and relationships between these three parameters on the

range of the 95% con�dence interval. The e�ects explored are changes of each of the three parameters

of: −1 standard deviation, +0 standard deviations, and +1 standard deviation to each of the three

assumed (true) distributional parameters (the standard deviation is in reference to those estimated by

EI [2]). This produces 27 cases to consider; the empirical cumulative distribution functions of these

27 cases are shown and discussed in Figure 3.2.
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Figure 3.2:
This �gure plots the empirical cumulative distribution functions of the 27 cases described above. The size

of the 95% con�dence interval of these cases ranges from around 17 to around 24 e�ciency percentage

points; this does not consider the lesser issue of the movement away from a mean of zero (as the relative

deviations are of primary concern). This result demonstrates that reasonable changes in the estimates of the

distributional parameters (i.e. within one standard deviation) produces non-trivial changes in the potential

to erroneously measure �rm e�ciency. This �gure, along with similar estimations in the context of purely

simulated �rms (simulations not shown), suggests that the interaction between the three distributional

variables within an SFA framework with 544 data points, is not simple, and has a non-trivial e�ect on the

di�erences between actual e�ciency and estimated e�ciency.

The results of these three simulations provide an analysis of statistical robustness and fairness. Given

the distribution in Figure 3.1, it would be inequitable to draw deviations from true e�ciency scores

from such a distribution: the dispersion is simply too large. The lack of fairness is further compounded

by benchmarking �rms with the lowest estimated e�ciency scores against a frontier determined by the

�rms with the highest e�ciency scores. The large and uncertain range of the deviation of estimated

e�ciency scores from actual e�ciency shows that the results are not marginal nor trivial. These

three simulations demonstrate the lack of robustness of the applied use of the SFA model in this

circumstance. The use of the mean di�erence in the above simulation does not re�ect the distribution

of the di�erence of actual versus estimated e�ciency scores, and is another instance of the median

or mean being misleading.

Con�dence The simulations above show that deviations of e�ciency scores of over 10 e�ciency

percentage points are experienced by 9% of �rms. This is not a trivial nor inconsequential result:

rather, it is evidence that the model accepted by the AER is not statistically robust, and has direct

e�ects on the e�ciency results of the model. It is unlikely that the model, in its current form and

interpretation, produces accurate results re�ective of actual e�ciency levels.
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3.2 The distributions of error terms are correct

Assumption The symmetric and asymmetric error terms have the following assumed distributions,

respectively: vi,t ∼ N (0, σ2V ) and ui ∼
∣∣N (µ, σ2U )

∣∣.
Context The intended purpose of the SFA model is to estimate the cost function along with two

random terms, one a symmetric error term (typically interpreted as `random noise') and the other

an asymmetric error term (typically interpreted as `ine�ciency'). The likelihood function, used to

estimate the parameters in the maximum likelihood framework, is de�ned by the assumptions imposed

on the error terms. For both error terms to be identi�ed within the maximum likelihood framework,

distributions need to be imposed on both terms. The distributional assumptions imposed above have

been used in academic papers (its �rst use was in [25]), mainly due to the mathematical tractability

in de�ning the likelihood function. Mathematical simplicity does not imply the assumed distributions

are appropriate in every circumstance: this needs to be examined in each individual case. This is not

to say that statistical assumptions should not be made; rather, statistical assumptions are necessary

to give statistical insights, but they need to be consistent with the data.

Implications if the assumptions do not hold If one or both of the distributional assumptions

imposed on the error terms is misspeci�ed, then the likelihood function is incorrectly speci�ed and

so the estimation of the parameters (i.e. the maximisation) may not be reliable or valid, and can

have serious consequences for interpretation of the data [26]. It is important to check for these distri-

butional assumptions before accepting any statistical procedure [27]. Since the parameter estimates

determine both (estimated) errors, and the asymmetric errors are used to determine e�ciency, then

the consequences of a misspeci�ed likelihood function �ow into e�ciency estimates.

Reality A number of formal and informal tests can be used to analyse distributional assumptions,

as discussed in [26]. The �rst test is a visual test: the QQ-plot of the data against the assumed

distribution for both error terms − see Appendix 2 for a discussion of the interpretation of a QQ-plot.

Figure 3.3(a) shows the QQ-plot for the asymmetric error term, and part (b) of the same �gure shows

the QQ-plot for the symmetric error term.

32



RESPAresearch

(a) (b)

Figure 3.3:
(a) The QQ-plot of the asymmteric error term suggests that there might be some non-linearities in the plot,

but this would be a subjective leap of faith. A more appropriate interpretation is that data seems to be

approximately linear, with a signi�cant outlier.

(b) For the symmetric error terms, there seems to be a non-linear `S'-shaped relationship in the QQ-

plot. The data seems to have fatter tails than the assumed normal distribution.

In both plots, the red points represent Australian �rms.

Visual inspection of the QQ-plots shows that the assumption on the symmetric error term may be

inconsistent with the assumed normal distribution: the actual symmetric errors seem to have fatter

tails than a normal distribution. Formal tests of normality are shown and discussed in Table 1.
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test ui vi,t

Shapiro-Wilk
not reject normality

(p = 0.2053)
reject normality

(p = 7.77× 10−8)

Anderson-Darling
not reject normality

(p = 0.1511)
reject normality

(p = 5.78× 10−4)

Table 1:
This table shows tests of normality of the asymmetric (ui) and symmetric (vi,t) error terms at the 1%

signi�cant level. These results are consistent with the QQ-plot visual analysis: the asymmetric error term

is consistent with a normal distribution (rather than a truncated normal, but since the truncation occurs

at an extreme point away from the majority of the probability mass, this is quite irrelevant), whereas the

symmetric error term is inconsistent with a normal distribution at the 1% level of signi�cant. While these

tests have weaknesses, they have the greatest statistical power of a number of common normality tests [27].

The statistical power of a test is the extent to which that test rejects the null hypothesis (i.e. that the data

is normally distributed) when it is false (i.e. the data is not normally distributed). The weaknesses of these

tests include having low power for sample sizes under approximately 200, but with a sample size of 544, these

tests have been shown to have large statistical power (it needs to be noted that these results were under

controlled conditions) [27].

These test are still useful elements in statistical decision making when they are used as indicators rather than

certainties, as in this report.

The consequences of violating the assumption of the distribution of the symmetric error term are not

isolated to that term, but rather pervade the estimation of all the parameters and the subsequent

e�ciency analysis. That is, it is not a valid interpretation to state that since the asymmetric error

terms used in the e�ciency analysis are consistent with their assumed distribution then the e�ciency

analysis itself is valid. The degree to which a misspeci�ed likelihood function a�ects e�ciency score

estimates is now analysed using simulations.

Simulation This simulation is a replication of the simulation in Section 3.1, with the following

di�erences: assume that the symmetric error term has either a t−distribution with 5 degrees of

freedom, or an exponential power distribution with shape parameter equal to 1.5, both appropriately

scaled to approximate EI's variance estimate of the symmetric error term. The reasoning behind these

two choices is to be able to impose a fatter tailed distribution visually re�ective of the distribution

of the symmetric error term in Figure 3.3(b): the QQ-plot of a typical `run' of the simulated data

against the theoretical distributions for both error terms is shown in Figure 3.4. These simulation

results are then compared to the `control', which is the result from Figure 3.1.
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(a) (b) (c)

Figure 3.4:
These QQ-plots are typical examples from the random draws described below.

(a) This asymmetric error data was created by taking N = 68 (the number of �rms in the sample) random

draws from a truncated normal distribution with mean µ = 0.385237 and variance σ2
U = 0.038796, as per the

estimates accepted by the AER.

(b) (Experimental condition 1) This symmetric error data was created by taking 544 random draws (the

number of observations) from a t−distribution with �ve degrees of freedom and scaled so that variance is

approximately 0.0098.

(c) (Experimental condition 2) This symmetric error data was created by taking 544 random draws from an

exponential power distribution with shape parameter equal to 1.5 and scaled so that variance is approximately

0.0098.

This simulated data is then run through the same SFA model as accepted by the AER. The di�erence

between the true e�ciency of the �rms, as per the DGP for the asymmetric errors described above,

and the estimated e�ciency scores using this data, are shown and discussed in Figure 3.5.
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Figure 3.5:
The data used in Figure 3.1 is the `control' condition to which the `experimental' conditions of the heavy-tailed

symmetric errors are compared with. Given the data sets generated using the process described above, this

�gure plots the empirical cumulative distribution functions. There is some variation away from the control

condition (black) for both the heavy tailed distributions (red and green). This di�erence is quite small at

approximately 1 e�ciency percentage point di�erence at the maximum. However, the degree of spread of the

heavy tailed distributions, relative to the control condition, remain essentially unchanged: it is still large.

The code for this simulation is available online as 20150729_RESPAresearch_Statistical_assumptions.R.

Con�dence The model estimates of the symmetric error terms are inconsistent with the statistical

assumptions imposed to construct the likelihood function. The simulation above demonstrates that

the misspeci�cation of the distributional assumptions of the errors seems to have a negligible e�ect.

Despite the violation of these distributional assumptions having a small e�ect on the e�ciency scores,

the spread of the di�erence between the actual and estimated e�ciency scores remains an issue, as

discussed in Section 3.1.

3.3 Post-modelling adjustments and the frontier

Post-modelling adjustments The AER adjusted the e�ciency scores by factors it, in its regulatory

discretion, deemed important. These post-modelling adjustments are not founded in economics,

statistics or any other science; they are subjective, and at times, inconsistent with implicit theoretical

assumptions used in the modelling.

Assuming a factor is theoretically insigni�cant in the formal modelling but adjusting the results of

that formal model for the impacts of that same factor is an arbitrary, and inconsistent, approach to

analysis. For example, where post-modelling adjustments have been made to account for a speci�c

variable, the AER has changed e�ciency scores to account for that variable by between 0.5% and 8.5%

for NSW and ACT distribution �rms [28] (the determinations available at the time of this analysis).

These adjustments are not inconsequential. Theoretically − and the results used are based on this

theory − if the factor is adjusted for post-modelling, then it is signi�cant. If it is signi�cant, then it
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needs to be re�ected in the production set.

Further, the size of the e�ect cannot be assumed to be a one-for-one adjustment, as demonstrated in

di�erent but related contexts in Sections 2.4 and 2.5. These factors, if assumed to be important, a�ect

both the ex ante and low-cost ex post production sets. The AER assumes the size of these e�ects to

be small, and the �ow-through e�ects also to be small. This assumption is without evidence and, as

was demonstrated with the simulation of di�erences in input prices, small di�erences in assumptions

can be magni�ed by the theoretical framework.

The lower bound of any positive adjustment to a variable is purely arbitrary: the assumption of 0.5

percentage points change to the e�ciency score assumes that the average of all such e�ects is this

value. Leaving aside the issue with averages, there is no scienti�c basis for this claim, nor this general

approach; this is neither a quantitative nor qualitative approach as these values are not based on

any model or evidence. These factors have, in the main, not been attempted to be quanti�ed and

adjusted for prior to modelling, and as such leave the estimation open to controllable biases.

In a purely statistical sense, if a variable is assumed important but omitted from the analysis, then the

parameter estimates will su�er from omitted variable bias (even if the likelihood function were of the

correct form bar the omitted variable). By using post-modelling adjustments, the AER has assumed

the bias in any of the estimated parameters, and thus the e�ciency estimates, to be immaterial. This

assumption is also without basis.

It is worth noting that we can see at least one feasible method to simulate the size of the e�ects

of the adjustments described in this section and in Section 7 of [2], while remaining within the

neoclassical realm. This has not been pursued in this report as it is expected to require discussion

with stakeholders.

Frontier adjustment The frontier is the minimum cost function in neoclassical theory on which

every e�cient �rm would operate. The frontier is an immovable benchmark in neoclassical theory, the

theory on which the SFA model relies; the frontier should not change if the model has been correctly

speci�ed and estimated. The movement of the frontier accepted by the AER is an arbitrary, non-linear

adjustment to the e�ciency scores of the �rms: after moving the frontier, any �rm above the new

frontier has an e�ciency score of 1 while every other �rm is scaled by this lower frontier.16 The AER

justi�es this adjustment as:

[I]n deciding what is materially ine�cient, we consider it is appropriate to provide a

margin for the e�ect of potential modelling and data limitations. To give e�ect to this

16The mathematical relationship equivalent to moving the frontier down is:

newEffScore = min

{
1,

oldEffScore

0.768

}
Writing out this relationship helps us understand the nature of this choice. (We understand the reason for this form
is a movement down of the frontier, but we are trying to analyse the technical implication of this choice.) The
division by 0.768, a relatively arbitrary number, scales the SFA estimated e�ciency scores and thereby increases
the di�erence in e�ciency scores between any pair of �rms. However, the non-linearity introduced by the minimum
function results in some pairs of �rms retaining this increased e�ciency score di�erential (i.e. those below 1 in
the new e�ciency score scale), other pairs of �rms decreasing their e�ciency score di�erentials (i.e. when both
�rms have an e�ciency score of 1 in the new scale), and some pairs of �rms may have an increased or decreased
di�erential depending on the speci�c values. This demonstrates the inconsistent e�ect of this adjustment on the
comparison between �rms.
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consideration, we do not compare service providers to the frontier business. We consider

the appropriate �benchmark comparison point� is the lowest of the e�ciency scores for

service providers in the top quartile of possible scores on our preferred SFA model. [29]

The AER considers the frontier adjustment accounts for theory and model uncertainty (i.e. that their

model and the underlying theory may be inappropriate).17 However, the AER still accepts (a linearly

expanded version of) the size of the e�ciency di�erences between any two �rms below the frontier.

This is accepting that the di�erences between some pairs of �rms is larger than the results of the SFA

model, but the di�erences between other pairs is smaller (as discussed in Footnote 16). This does not

adequately account for issues with model robustness as it does not treat all �rms equally. Further,

this is not a cautious approach to the use of the results of the model, given the issues described in

this report on which the results rely upon; this does not even consider data quality and comparability

issues.

17Model uncertainty is a major source of Knightian uncertainty, one that if assumed away is inconsistent with a scienti�c
approach. Section 4.2 discusses this in more detail.
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4 Context of the interpretation

This section discusses evidence of e�ciency analysis from other, some more competitive, industries,

as well as the issue of model interpretation.

4.1 E�ciency estimates in other industries

The application of e�ciency analysis in a regulated industry is typically justi�ed in its use by the claim

that it approximates the competitive pressures of (more) competitive industries. The underlying

assumptions is that all �rms in competitive industries are perfectly e�cient; that is, all �rms in

competitive industries are on the frontier of the industry cost function (which is also assumed to exist).

A number of studies related to `X-e�ciency' are relevant for this discussion: these are discussed in

Table 2 below.

X-e�ciency, in this report, is de�ned as the percent by which actual total costs could be reduced if a

�rm were to operate on the cost e�cient frontier [30].18 X-e�ciency varies between 0% and 100%,

with 0% interpreted as costs being perfectly e�cient (i.e. no cost savings can be achieved) and thus

on the frontier, and 100% interpreted as the limit where all costs can be reduced to get to the frontier.

Table 2 summarises a number of studies which measure X-e�ciency of industries ranging from banking

to community colleges. In the SFA framework, the statistical framework used by all of the studies in

Table 2, the `asymmetric error term' is used to determine the `X-e�ciency', very similar to the method

accepted by the AER. Figure 4.1 plots the X-e�ciency score distributions of the studies with available

data discussed in Table 2, along with the Australian electricity distribution �rms' (raw) e�ciency

scores. The e�ciency results from these studies provide context for the X-e�ciency scores accepted

by the AER: the cost reduction potential of these industries is not that di�erent from the Australian

electricity distribution industry. The argument that all �rms must be at or near the e�cient cost

frontier to be re�ective of competition is therefore ill-founded given this evidence.

18It can be `inversely' de�ned as `1 minus' the de�nition we use in this report.
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Paper(s) Details of study Descriptive statistics of X-e�ciency

AER/EI This is the study accepted by the AER; it is used to give context to the

results of the other studies.

Mean = 31.6%, standard deviation

= 18.5 e�ciency percentage

points, range = [5, 60].

[30] This study analyses the Hong Kong commercial banking sector. [31]

�nds that, during the period 1992 to 2002, the Hong Kong banking

sector was �highly competitive�; it would be expected that most �rms

would be at or near the e�ciency frontier. The stochastic frontier

approach is used in [30] to investigate the X-e�ciency of 59 commercial

banks in Hong Kong over the period 1992 to 1999. The descriptive

statistics of the X-e�ciency estimates for Hong Kong banks are

comparable to those found in other countries, including the US. The

author notes that the magnitude of the measured cost ine�ciency seems

striking given the very high density of banks.

Mean = 32%, standard deviation

= 22 e�ciency percentage points

(the distribution is shown in Figure

4.1).

[32, 33] [32] examines the properties of X-ine�ciency and the relationship of

X-ine�ciency with risk-taking and stock returns of 254 U.S. bank

holding �rms during the period 1986 to 1991 using the SFA translog cost

function approach.

[33] examines the importance of o�-balance-sheet (OBS) activities of a

set of publicly listed U.S. banks on X-e�ciency measures. The authors

use distribution free and SFA methods to estimate the X-e�ciency of a

set of publicly traded U.S. commercial banks over the period 1992 to

1997. The authors note that previous studies have placed mean

production cost e�ciency at near 20%, with these results not too far

from those estimates.

[32] (quartile of smallest �rms):
mean = 19%, median = 15%,
standard deviation = 15 e�ciency
percentage points, range = [2, 95];
(quartile of largest �rms): mean =
8%, median = 7%, standard
deviation = 4 e�ciency percentage
points, range = [2, 32];

[33] (SFA, with OBS activities):

mean = 15%; (SFA, without OBS

activities): mean = 18%;

(distribution free method, with

OBS activities): mean = 26%;

(distribution free method, without

OBS activities): mean = 28%.

[34] This study focuses on the causes of the di�erences in X-e�ciency in the

life insurance industry, using U.S. data from 358 life insurance �rms

during the 1990 to 1995 period. This study tests for a relationship

between a �rm's output choice and measures of X-e�ciency. The

�ndings of an older study, [35], also analysing X-e�ciency in the U.S. life

insurance industry, are consistent with this study.

Mean = 58%, median = 64%,

range = [0, 85].

[36] This study examines the productive e�ciency levels present in the

market for residential real estate brokerage services by using the

stochastic frontier approach. The data comes from 276 �rms taken

during a periodic, nation-wide survey of �rms in the U.S. real estate

brokerage industry, which included the 1990/91 survey.

Mean = 12%, standard deviation

= 5 e�ciency percentage points,

range = [6, 36].

[37] This (working) paper examines the X-e�ciency of �rms in the U.S.

community college sector using SFA. Data from 950 community colleges

over the period 2003 to 2010 is used.

Mean = 41% (the distribution of

the 950 �rms is shown in Figure

4.1 below).

Table 2:
This table is a brief summary of studies of X-e�ciency in other, some more competitive, industries than the

Australian electricity distribution industry.
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Figure 4.1:
This �gure shows the distribution of the X-e�ciency scores (i.e. cost reduction potential) of the studies in

Table 2 that provided such detailed information. Note that for the Hong Kong banking and the Australian

electricity distribution sectors, due to a small sample size (59 and 13, respectively), the data was put into

bins of 10 e�ciency percentage points. This �gure is a simple way to demonstrate, in a general sense, that

the (raw) ine�ciency estimates of Australian electricity distribution �rms (blue) are not that visually di�erent

to the Hong Kong banking industry (green) and the (conservative, state �xed e�ects) e�ciency estimates of

the U.S. community college sector.

4.2 Uncertainty and complexity

We at RESPAresearch recognise two major types of uncertainties when modelling, which we call model

robustness and model uncertainty.19 Model robustness is the degree to which the results of a model

change when the assumptions within the model universe are altered. We analyse model robustness

by altering certain assumptions in simulated environments; this allows us to understand how sensitive

the results are to certain assumptions. (Model robustness is analysed in Sections 2 and 3, and forms

the bulk of this report.)

Model uncertainty is the Knightian uncertainty which exists from using a model as a surrogate for a

target system (e.g. the e�ciency of Australian electricity distribution �rms) when the accuracy and

appropriateness of the model are unknown or unknowable. Model uncertainty and model robustness

are two separate concepts. A model can be highly robust to modelling assumptions, but it can still be

a poor re�ection of the target system. Model uncertainty cannot be quanti�ed in any single real-world

application, even via simulations, since in most, if not all cases, we do not know the underlying true

processes. It can, however, be shown to be small or negligible over many studies comparing model

results with the phenomenon the model emulates. Unfortunately, this is not the case with e�ciency

analysis as we do not know the true e�ciency of any �rm, so cannot compare the model results with

true e�ciency levels.

Model uncertainty arises from the potential of inappropriate modelling of the target system, and is

related to the complexity of the target system. Complexity is the scienti�c term used to denote

systems with multiple, interacting components which produce global behaviours that cannot be easily

19We accept and incorporate modelling weaknesses and uncertainties into our recommendations; it is a clause in our
founding constitution.
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modelled or explained in terms of the interactions between individual elements.20 The more complex

the target system, the more model uncertainty is present, and the more we do not know the extent

to which a model is valid, and subsequently the extent to which we can rely on the results. Rather

than making detailed predictions, complexity research focuses on asking the right questions given

the context, and suggesting possible strategies − regulatory strategy is the bene�t that complexity

science can provide.

Model uncertainty is typically ignored when applying theory to policy. In most cases, if it is acknowl-

edged, the model results are still largely accepted. The argument that the theory used is the best

theory available − a subjective assessment ignoring behavioural theories − which implies that it is the

best that can be done at the current point in time, is invalid. This argument does not address the

consequence of adopting a model without considering its inherent uncertainty: the �best� model may

still be very poor and misleading.21 Model uncertainty needs to be acknowledged in the interpretation

of the modelling results, above and beyond that of model robustness. The results themselves are

what need to be tempered: the more model uncertainty, the more qualitative the interpretation needs

to be.

Models which give precise answers are most highly valued, even if this precision is inconsistent with

evidence. Despite being a human desire, the acceptance of such precise estimates ignores both weak

and strong Knightian uncertainty. The precision of the results produce a false veneer of certainty in

the presence of signi�cant model uncertainty.

Academic acceptability and the historical use of models is no guarantee that the models are appropriate

and de�nitely does not exclude model uncertainty. �[T]he beauty of complicated mathematics is that it

appears to the public as a product of scienti�c discourse� [48], but as discussed in [47], the weaknesses

of these models needs to be understood and not underestimated.

In recent years, there has been a growing heterodoxy in economics regarding the assumptions and

tools underlying neoclassical economics. Despite the myriad proximate causes of this heterodoxy,

the ultimate cause is an attempt to remove part of the unrealistically strong assumptions required in

neoclassical economics. The reason is that dealing with systems such as the economy or individual

�rms is not straightforward because these are complicated and interconnected with other non-economic

systems such as social, political, biological and ecological systems [48]. Complexity economics deviates

from the neoclassical framework in a discrete way, intimately a�ecting the framework itself.

Recent publications in complexity economics are an attempt to reconcile observed behaviours and

theory. For example, [48] argues that uncertainty within complex systems creates a tendency to

adopt rules, in the form of habits, routines, conventions and norms that are just as rational in such

conditions. However, learning plays a major role when the environment inevitably changes. There is

a strong similarity of this approach with that evidenced in Box 1. [48], and to varying extents [49],

discuss these simple rules and argue that optimisation is a less relevant rule the more pronounced

the changes in behaviours, processes and constraints. [48] goes on to argue that �rms are a good

20There is still little consensus on the de�nition of a complex system, however, this captures the essence of most
de�nitions used.

21Suppose the `best' model for economic e�ciency analysis was precise with probability 0.05, and a random draw from
the interval [0, 1] with probability 0.95. Given this model is `best' at the current time, it clearly should not be used
to guide policy. This is a simple, but still not ideal, analogy to understanding model uncertainty. (It is not ideal as
it assumes we know, with certainty, that the model is correct with some probability and incorrect with some other
probability; the probabilities assigned to model accuracy are simply unknown in applications.)
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example of a complex adaptive system (CAS). This is because the rules used by �rms lead to the

formation of network structures that have a degree of irreversibility (which further restricts the extent

to which the logic of optimization can be applied). In a CAS, the production function is not a suitable

analytical construct to capture how production actually takes place. It may be trivial to associate

inputs with outputs over any chosen time period, however in reality, such relations alter over time.

This alteration can be large and can occur in both smooth and discontinuous forms. The capital

stock that currently exists within a �rm is not `optimal': it is inherited from history and only new

investment can be subject to (constrained) optimization exercises. The existence of irreversible capital

stock implies that constrained optimization is fraught with di�culty as a general theoretical framework

for understanding production [48]. Appendix 3 discusses an evolutionary framework for understanding

�rms and industries which embraces dynamic adaptability rather than static optimisation.

4.3 The precautionary principle

The precautionary principle, as has been used in potential environmental damage, takes one of two

forms in [38]:

Where there are possibilities of large or irreversible serious e�ects, scienti�c uncertainty

should not prevent protective actions from being taken. [Or] [w]here there are possibilities

of large or irreversible serious e�ects, action should be taken, even if there is considerable

scienti�c uncertainty.

The Protection of the Environment Administration Act 1991 (NSW) [39] adopts the precautionary

principle in a similar form.22 The judgment of Telstra Corporation Limited v Hornsby Shire Council

[40] discussed a number of facets of the precautionary principle, including: (i) shifting of the burden

of proof : if there is a threat of serious or irreversible damage and there is the requisite degree of

scienti�c uncertainty, the precautionary principle will be activated, with a shift of the evidentiary

burden of proof to where the decision-maker must assume that the threat of serious or irreversible

damage is no longer uncertain but is a reality; (ii) degree of precaution required : the type and level

of precautionary measures that will be appropriate will depend on the combined e�ect of the degree of

seriousness and irreversibility of the threat and the degree of uncertainty − the more signi�cant and the

more uncertain the threat, the greater the degree of precaution required; (iii) zero risk precautionary

standard inappropriate: the precautionary principle should not be used to try to avoid all risks; and

(iv) proportionality of response: the precautionary principle embraces the concept of proportionality,

which means that the measures should not go beyond what is appropriate and necessary in order to

achieve the objectives in question.

The precautionary principle can be equally applied to potential economic policies: the potential

activation of the precautionary principle depends on the individual circumstances of each potential

policy. If it is activated, then the degree to which the precaution is required must be determined,

including the possibility of inaction.

22Speci�cally: if there are threats of serious or irreversible environmental damage, lack of full scienti�c certainty should
not be used as a reason for postponing measures to prevent environmental degradation.
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In the context of electricity distribution, this report discusses the signi�cant (theoretical) scienti�c

uncertainty present in the analysis.23 For the precautionary principle to be activated, the potential

for serious and/or irreversible consequences must be demonstrated. From the outset, we would like to

make clear that the following discussion focusses, as is necessary in the context of the precautionary

principle, on the potential downside consequences.

Three main areas of concern regarding opex are network maintenance, vegetation maintenance and

emergency responses. Benchmarking data from 2009 to 2013 demonstrates that Australian networks

have these three categories constituting as much as 65% of opex, with the median proportion being

over 45%.24 The maximum reduction in opex, based on the (post-model adjusted) benchmarking

model, is almost 33% [28]. Of consequence to the application of the precautionary principle, the size

of these opex cuts may reduce the frequency of both network maintenance and vegetation clearance,

and may also increase the response time to emergencies.

Estimates of the value of potential downside consequences of these opex cuts, given the uncertainty

around the model used, include:25

1. Increased bush�re frequency due to power-line ignitions. The potential consequences of bush-

�res, rather than the causes, can be provided by looking at historical extremes. We don't have

to go back far in time to see an extreme example: the 2009 `Black Saturday' Victorian bush-

�re. The 2009 Victorian Bush�res Royal Commission (VBRC) estimated the economic cost to

Australia was over $4 billion, which included the loss of 173 lives [43]. The VBRC discussed

the increased risks of, essentially, under-maintenance of ageing assets:

[Electricity] distribution businesses' capacity to respond to [an] ageing network

is, however, constrained by the electricity industry's economic regulatory regime.

The regime favours the status quo and makes it di�cult to bring about substantial

reform. As components of the distribution network age and approach the end of their

engineering life, there will probably be an increase in the number of �res resulting

from asset failures unless urgent preventive steps are taken.

The VBRC further discusses how electricity-caused �res are most likely to occur when the risk

of a �re getting out of control and having deadly consequences is greatest. Thus both asset

maintenance and vegetation clearance are both expenses which reduce the chances of electricity

bush�re ignitions.

A less extreme example is the Tatong bush�re of 16 January 2007, which was estimated to have

caused $500 million worth of economic loss to Victoria [44].

2. Increased power outages due to degradation and non-maintenance of the network. The eco-

nomic consequences, rather than the causes, of power outages are of concern. Despite some

signi�cant di�erences, the U.S. economy is taken as a (cautious) comparator as data on total

23The discussion in the previous sections does not consider issues with the data or choice of variables. Further, we are
not claiming that there are no highly ine�cient electricity distribution �rms in Australia; rather, we are stating that
given the discussion and analysis in Sections 2 and 3, it is highly implausible that the assumptions of neoclassical
production theory re�ect the `true' e�ciencies of the �rms, even approximately.

24This was calculated based on the values in the AER's category analysis spreadsheet for the three categories of interest
[41], relative to the opex values for those same years from the benchmarking input spreadsheet [42].

25Note that there are also unknown consequences arising from the complexity of the system, such as whether or not
the distribution network could be restored if degraded past some threshold, or whether an increase in blackouts will
lead to an increased likelihood of consumers choosing to go `o� grid'.

44



RESPAresearch

economic costs of electricity outages is readily available. The comparison accounts for di�er-

ences in incomes and purchasing power relative to Australia: these converted annual values

are estimated at between AUD$15.8 and AUD$24.8 billion [45], or at AUD$5.3 billion [46].

There are numerous di�erences between the U.S. and Australia in the electricity distribution

infrastructure which would invalidate the use of these precise values, however, when qualita-

tively interpreted, we can say it is reasonable that the cost of power outages to the Australian

economy is in the order of billions of dollars per annum.

These consequences are not de�nite, nor should they be in a discussion about the precautionary

principle: they are potential downside consequences to the Australian populace. The precautionary

principle states that the size of these potential events warrants robust evidence that the consequences

of the policy are negligible or manageable. That is, if the consequences are large and there is scienti�c

uncertainty regarding the policy, then the burden of proof switches to the policy proponent. The

proponent must demonstrate, using robust scienti�c evidence, that the likelihood of such downside

events resulting from the introduction of the policy, constitute an acceptable risk to the Australian

community.

Given the potential downside economic and human consequences of underfunding electricity distribu-

tion �rms, and the modelling issues surrounding the model accepted by the AER, the circumstances

outlined in this report su�ce to invoke the precautionary principle. However, the degree of precaution

and the proportionality of the response of the precautionary principle is related to the size of the opex

changes: the larger the changes, the more substantial the evidence required against the potential

downside consequences. Changes to opex of up to one-third require a reversal of evidentiary burden:

speci�cally, robust, scienti�c evidence that the reduction in opex will change the bush�re and blackout

risks by an acceptably small or negligible amount must be provided to support such cuts.

Rather than taking the extremes of accepting the modelling (i.e. ignoring the issues) or accepting

inaction (because there are so many problems with the modelling), we recommend a reasonable and

pragmatic `middle ground' which takes into account both forces (see Section 5).

4.4 Interaction of model uncertainty and the precautionary principle

Model uncertainty and the precautionary principle have di�erent consequences depending on their use.

An issue arises when academic models are applied to generate policy recommendations. In academia,

a model may be accepted for publication based on, as is common, mathematical tractability, rather

than having a strong relationship to a target system. The consequences of publishing such a model

are low for the parties involved: journals run by academics have a preference for certain types of

models, and other academics cater to those preferences. Economic models usually claim to `explain'

some particular phenomenon, without detailing the weaknesses of the model, or instances where a

model cannot be applied [50]. Thus the (downside) consequences of publishing academic models are

low, and so the precautionary principle is not typically required or invoked.

In contrast, the consequences of applying those same models to policy may be high. [50] discusses the

philosophical approach to economics which maps model generation (i.e. `theory') to cases of potential

applicability of those models. This `case-based' approach endorses the view that the individual applying

the model must make a decision as to whether the model assumptions are approximately true (and so
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the model can be used as an approximation) or not.26 Thus the burden of `appropriate application'

rests with the researcher judging whether the model re�ects the applied target system su�ciently. This

is a highly subjective approach, open to in�uences by powerful stakeholders and political inclination.

5 Recommendations of RESPAresearch

RESPAresearch has formal documented processes which mitigate overstating results as well as politi-

cisation and misuse of science and scienti�c models. Given these processes, in the context of this

report, we recommend a two step approach:

1. We recommend performing further research into the e�ciency levels of �rms, using both (mod-

erated via simulation) neoclassical production theory and also empirically-based behavioural and

psychological theories. This is likely to produce more robust models, or at least provide fur-

ther insight into the degree of robustness of the models. A number of complementary, feasible

research avenues are available, which include, but are not limited to:

� Analyse capital ine�ciencies, which can be done in a number of ways, including a com-

parison to an optimal network, which accounts for idiosyncracies of each individual �rm.

That is, a geographically optimal network is determined given the geographical output re-

quirements, and an `ine�ciency' metric provides a measure of how far the actual network

is from the optimal network.

� Appropriately incorporate price di�erences across �rms, which would require obtaining

accurate input price di�erences across all jurisdictions in the sample, including Ontario,

all areas of New Zealand, and the within-state di�erences in Australia (e.g. rural versus

urban).

� Conduct analysis of uncertainty aversion of customers, which would provide an indication

of customer preferences for lower costs at the expense of potential unknown consequences

of possible underfunding of these �rms. This is a customer-led approach, and would provide

an indication of the value the customers place on the current service level, in relation to

an unknown comparator.

� Accounting for the statistical errors inherent in the SFA model to some acceptable level,

rather than simply assuming the mean or median �rm re�ects all �rms. This could poten-

tially be done by narrowing the range of estimated e�ciency scores by the range of the

95% con�dence interval in Figure 3.1(a).

� Other feasible simulations include the modelling of the complexity of network structures

and agent behaviours within the context of analysing comparative e�ciency levels. We

are currently creating the structure of an agent-based model of distribution networks to be

able to dictate the data required to calibrate the model appropriately, and then perform

comparative analysis in a realistic, rather than `black box', comparative framework.

2. We recommend acceptance of �rm e�ciency rankings rather than the absolute size of the

di�erences; this is a qualitative approach considering the complexity of the systems involved,

26Neoclassical economics is not useless; rather it is highly useful in appropriate circumstances, when uncertainties are
respected.
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and the signi�cant model uncertainty present. The results from Step 1 are then used for create

an interval for opex changes: the percentage opex allowance change for each �rm can be

determined as equally spaced points in such an interval. For example, the interval could be

[−10%, 2%], with the most ine�cient (estimated) �rm having imposed a 10% reduction in opex

and the most e�cient (estimated) �rm having imposed a 2% increase in opex. We understand

that this range is relatively arbitrary, but it is a qualitatively reasonable recommendation in the

context of the precautionary principle, questionable model robustness, and model uncertainty.

This approach would provide a reasonable, ongoing incentive for cost savings and be consistent with

the NER while ensuring the precautionary principle is upheld when scienti�c uncertainty persists.
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Appendix 1. The value of simulation

Simulations are a valuable but highly underused tool in economic theory and application. [51] and

[52] discuss in detail the bene�ts for economics and the reasons for the underuse of simulations in

economics.27

A key reason for the underuse of simulations is the preference of most economists (most likely by

training) for the use of deductive mathematical proofs. That is, neoclassical economic theory is based

on mathematical assumptions and deductive reasoning. [51] notes that in these models, increased

certainty is bought at the expense of reduced scope: the high degree of certainty achieved by mathe-

matical deduction from a set of assumptions is paid for by the high degree of uncertainty in using the

result outside the model. In applications like the one at hand, where millions of dollars and community

safety is potentially at stake, model certainty must yield to model reality.

Simulations are vastly more �exible than mathematical models in that they require fewer assumption to

produce useful results, and so can be used to ameliorate the problem of overconstraining assumptions.

Simulations are signi�cantly less overconstrained relative to neoclassical models, as fewer assumptions

are made for reasons of tractability. Thus good simulations are closer to reality, and so closer to the

target system: in this case, how electricity distribution �rms actually operate and the ine�ciencies

inherent in that operation.28 Appropriate simulations are essentially in silico experiments of systems

signi�cantly closer to reality.

The simulation analysis conducted in this paper would be di�cult to prove mathematically. Even if

a mathematical proof did exist, the question of how relevant the proof is in application still remains.

This would have to be achieved by assuming a distribution with certain parameters, and would

produce extremely precise results, a level of precision unwarranted in such applied work. A similar

level of precision can be achieved in the few lines of code attached with this report, by increasing the

simulated sample size.

Simulations are a tool which should not be ignored in applications, including within neoclassical

economics, as it allows the assessment of the magnitude and implication of any deviation from the

underlying assumption or assumptions. Computer simulations generate surrogate experience, and

can improve learning in an experience-poor domain if they are used wisely, with clear attention to

limitations [54]. In the way simulations have been used in this report, they are a highly relevant and

useful tool in assessing the magnitude of the deviations from theory, while remaining within the realm

of that theory.

Appendix 2. Interpreting a QQ-plot

Given a set of ordered data and a candidate distribution (i.e. a distribution which the data may

have come from), a QQ-plot is a visual plot of the quantiles of the data against the quantiles of the

distribution. An a% quantile is a datum in the ordered data where a% of the data is below this point.

27These references are recommended reading (with an open, scienti�c mind) for anyone interested or skeptical of
simulations in economics. As noted in [52], economists are �still reluctant to follow physicists in embracing computer
simulation as an important tool in the search for theoretical progress.�

28RESPAresearch has the expertise required to conduct the entirety of this e�ciency analysis using simulated, realistic
assumptions, unconstrained by neoclassical production theory.
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Consider the 10% quantile: the point in the data (respectively, in the distribution) where 10% of the

data points are below this point (respectively, 10% of the probability mass is below this point on the

candidate distribution). This will give two points: one from the data and one from the theoretical

distribution; these values constitute a single point in a scatter plot. The 10% quantile is then change

marginally to, say, 11%. The points in the data (respectively, the theoretical distribution) at which

11% of the data (respectively, probability mass) is below this point, constitute another point in the

scatter plot. Instead of choosing each percentage, all the data is optimally used when N quantiles

are considered (and thus N points on the scatter plot), where N is the number of data points in the

data set. The scatter plot of these quantiles is the QQ-plot.

The purpose of the QQ-plot is that if the data came from a distribution, changing from 10% to 11%

will result in approximately the same (linearly scaled) change in the quantile values for both the data

and the theoretical distribution. When the N quantiles are plotted, the relationship will be visually

close to linear. However, when the data di�ers from the candidate distribution, then the change from,

for example, the 10% to 11% quantile, will result in di�erent (linearly scaled) changes in the quantile

values for the data relative to the theoretical distribution. This will appear as a non-linearity in the

scatter plot of the quantiles. Thus a non-linearity is a visual indication of the data not arising from

the candidate theoretical distribution.

A QQ-plot can give further information: speci�c patterns in a QQ-plot can indicate speci�c di�erences

in the data relative to the candidate distribution. Figure 5.1 demonstrates and discusses the patterns

associated with di�erences in the `weights' of the tails of the distribution.

(a) (b)

Figure 5.1:
(a) The non-linearity in this QQ-plot indicates that the distribution of the data di�ers from the theoretical

distribution. This `S'-shaped non-linearity means that the distribution of the data has heavier (i.e. `fatter')

tails than the theoretical distribution.

(b) Similar to (a), there is signi�cant non-linearity in the QQ-plot. This non-linearity is an `inverse S'-shape,

which indicates that the distribution of the data has lighter (i.e. `thinner') tails than the theoretical distribution.
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Appendix 3. The �rm in an evolutionary system

One speci�c approach to modelling and understanding economic production within the complexity

framework is the view that �rms can be naturally viewed as an evolutionary system. Such a system

uses the evolutionary algorithm, which applies variation and selection to a given population [53, 54];

biological and cultural evolution are simply examples of this algorithm.

The unit of selection is of central importance in variation and selection within an evolutionary frame-

work. The unit of selection in an economy (or industry) are not �rms, just like organisms are not the

unit of selection in biological evolution [53]. Every �rm has either an explicit, or more likely, theoretical

business plan, which is a comprehensive document de�ning the purpose of the business, its strategies,

its production plans, its technology and skill requirements, its economic model, etc [53]. This business

plan can in principle be written down for every �rm. Each such business plans contains `modules': a

module is a component of a business plan that has provided in the past, or could provide in the future,

a basis for di�erential selection between businesses in a competitive environment. Modules are the

units of selection in economic evolution [53].29 Modules are a malleable concept, and are analogous

to genes within biological evolution or memes within cultural evolution. Given this basis, we can now

discuss variation and selection.

Variation between �rms in business plan modules should not be a controversial statement: di�erent

�rms have di�erent operational procedures, di�erent cultures, di�erent strategies, di�erent technolo-

gies, and most importantly, di�erent historical paths, all of which in�uence the modules. These

variations come from current and historical choices, as well as current and historical external factors.

When viewed as an evolutionary system, �rm di�erences (i.e. variations) are not only expected but

necessary [54]. This view provides a simple way to reconcile the persistent variation in `neoclassical

e�ciency' distributions across time, space and industry.30

The �tness of a �rm in economic evolution has a relationship to pro�tability, as �rms that make

consistent losses will be driven out of the industry. However, after earning survival level pro�t, �rms

can de�ne di�erent objectives rather than solely pro�tability; for example, market share [54]. Firms

attempt to generate pro�ts (or other objectives above the survival level) by combining and enacting

all the modules within their business plan [53]. Pro�tability over some prolonged period is a necessary

condition for �rm survival. It, however, does not imply pro�t maximisation. The variation within

modules generates variation between �rms and thus allows for di�erential selection. Selection in

economic evolution is determined by consumers purchasing some products and not others: consumers

select for some �rms and against others, with this selection determining �tness [53, 54]. Selection

occurs more rapidly in those environments with more competitors, and is signi�cantly retarded in a

natural monopoly setting. These reduced pressures are, however, irrelevant to the current discussion

as they simply provide a prima facie reason for regulation. The focus of this report is on the validity of

comparing �rms, which necessitates a focus on the variation component of the evolutionary algorithm,

rather than the selection component.

29The de�nition of a module is not circular as it represents, in a simple way, intuitive concepts such as strategy, pricing
plans, and so on, but that cannot be reconciled into a single context: a pricing module would look very di�erent to
a strategic takeover module.

30This method does not simply assume the wanted result, as it uses observations that �rms are di�erent, and tries
to reconcile those di�erences within the framework of how �rms actually operate. The reason for the di�erences
comes from di�erences in modules (i.e. di�erences in �rm practices).
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Variation in modules implies di�erences in business plans, which gives rise to variations in economic

�tness. A given �rm, at a given point in time, has a current business plan (i.e. a set of modules).

This produces a certain level of �tness for that �rm in the current environment. This �tness is a

single point on that �rm's `�tness landscape', which is a mapping from the space of `business plans'

to the �tness of each implemented business plan, for that �rm, in the current environment. This

�tness landscape re�ects the current environment, the current business plan (which is dependent on

history), the costs of movement to any other business plan, and other factors.31 Furthermore, the

�tness landscape is dynamic; it is constantly changing due to internal and external in�uences. At

times it may be a relatively stable and linear system, and at other times it may be complex and

non-linear [54]. Just like in biological and cultural evolution, this �tness landscape is a theoretical

construct, and cannot be determined prior to implementation of a given business plan.

Given two �rms, applying the business plan of �rm 1 to �rm 2 may result in vastly di�erent �tness.

This is a result of �rm 2 having a di�erent �tness landscape; signi�cant movement away from �rm

2's current business plan may require costly reversal of historical capital and contracts, or focus on

di�erent customers, or face a di�erent physical or cultural geography. Such an imposition may force

�rm 2 into sustained losses and possible selection out of the population. Within the evolutionary

framework, it is without basis to assume that all �rms have the same �tness landscape − it is equally

unreasonable to assume that two given organisms of the same species have the same �tness landscape.

However, this is precisely the assumption that is required for `e�ciency' comparisons between �rms

to be valid.

This evolutionary model of �rm behaviour is consistent with observed �rm behaviour [54]: for instance,

advertising and marketing a�ect selection; adoption of best-industry practices a�ects modules within

business plans; historical and physical factors matter in current decision making by determining the

�tness of di�erent business plans. Furthermore, the evolutionary model is a model that acknowledges

�rms, industries and the economy as complex systems, which is consistent with the observed �rm be-

haviour of using heuristics, control and learning rather than forecasting [11]. Acknowledging the view

that industries and the economy are complex, evolutionary systems means trading-o� certain forms of

quanti�cation and forecasting for a deeper, observation-consistent understanding of those industries.

Harnessing complexity involves acting sensibly without fully understanding how the world works [54].

Understanding how �rms �t within the evolutionary framework, including natural monopolies, allows

intelligent intervention in designing and implementing incentives in a pragmatic way, to guide �rms,

under their own volition, to become �tter within their own landscape.

31Small changes in business plans will typically lead to small changes in pro�tability; large changes may lead to large
changes in �tness, both in a positive or negative direction (for a currently pro�table �rm, the negative direction
is more likely if the large change is purely random). This type of landscape is called a partially correlated �tness
landscape.
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