PROJECTS FOR WHICH DMIA APPROVAL IS SOUGHT

Projects for which approval is sought under the Demand Management Innovation Allowance (DMIA) for the 2015 – 2020 Regulatory Period include the following projects with a total value of \$3,076k, of which \$1,120k was incurred in the 2016-17 Regulatory year.

- 1. Grid Side Storage (\$436k Reg PTD, \$218k in 2016-17)
- 2. Future Network Modelling (\$372k Reg PTD, \$109k in 2016-17)
- 3. Residential Energy Storage (\$2,268k Reg PTD, \$793k in 2016-17)

These projects form part of a package of investigations aimed at informing SA Power Networks' approach to design, management and operation of the distribution network in response to increasing Distributed Energy Resource (DER) deployment on the network so as to most cost effectively manage the impacts and capture opportunities from DER.

1 Grid Side Storage

1.1 Nature and scope of the project

Energy Storage is being investigated by the electricity industry as a means to defer or avoid network augmentation in areas where demand constraints are forecast, but load growth is slow. Energy Storage also has the potential to increase the Photovoltaic (PV) hosting capacity of local networks and improve reliability. With a large range of storage technologies now available, very little is known about the performance of these technologies under Australian conditions and applications. In conjunction with the University of Adelaide and other partners, SA Power Networks has been undertaking a practical research study into the performance of energy storage systems across the likely applications within the distribution network.

1.2 Aims and expectations

This project will produce a mobile testing environment to better understand the performance of different energy storage technologies and systems in a range of Australian conditions and applications. The project will create a knowledge base for industry and system developers and provide a platform for advanced training facilities on an operational system.

1.3 Implementation of the project

This project is being led by the University of Adelaide as part of a syndicate comprising SA Power Networks, Solar Storage, ZEN Energy Systems and Power and Drive Solutions, with further funding support from the South Australian Government and Energy Networks Australia. The project has also attracted ARENA funding of \$1.4 million.

The mobile testing platform will comprise a mobile testing unit similar in size to a shipping container with a 270kW inverter, 270kWh of lithium batteries, associated control equipment, network protection and a SCADA interface. The unit will include a Labview installation to provide comprehensive monitoring of the performance of both the inverter and any associated battery systems. This data will be made available as part of the Australian Energy Storage Knowledge Bank maintained by the University of Adelaide.

The unit is currently undergoing factory testing utilising a testing facility in Bayswater, Melbourne. SAPN will attend the final stages of this testing. During October, the unit will be relocated to the

Adelaide University Campus in Thebarton where it will be connected to their 500kVA generator, wind tunnel turbines and a load bank to test up to maximum capability. The testing at Thebarton will be sufficient to demonstrate compliance with AS4777 and allow a Network Connection.

At the end of September, the battery will be installed on the network at Cape Jervis for commissioning during November for a summer trial.

It is currently planned to be on-site until May 2018, with a possible extension through the Winter months.

1.4 Implementation costs

The project costs to date are \$723k, with \$218k of this cost having been recognised in the 2016/17 Regulatory year.

1.5 Identifiable benefits

This project will provide insights into the suitability and performance of different storage technologies and systems when utilised in the most likely scenarios for distribution network management and operation. It will also determine situations whereby such solutions could be used in future to cost-effectively defer network upgrades and/or deliver improvements in network PV hosting capacity and reliability. The data collected and analysis undertaken will be made freely available to industry and vendors.

2 Future Network Modelling

2.1 Nature and scope of the project

Energy Storage for residential installations is being proposed as a complementary technology for the renewable energy systems currently deployed within distribution networks. The impacts of these systems will be driven to some extent by their sizing and ability to supply electrical capacity (kW or kVA) versus their energy stored (kWh). To better understand these impacts on the distribution network and network operations and design necessary to accommodate these systems, SA Power Networks has undertaken a comprehensive modelling project.

2.2 Aims and expectations

The modelling developed under this project identified the most beneficial energy storage system for different customers based on their interval data records. It can also be applied at higher levels within the network to determine the optimal mix of distributed resources – for example at the distribution transformer or zone substation levels. This modelling will provide insights into the likely rate of take up of distributed energy resources based on the costs of those resources and the economic returns to the customer. It will also enable insights into the likely impacts on network load profiles.

2.3 Implementation of the project

Consultants were engaged to develop an Excel based modelling tool which has been further refined by SA Power Networks. This tool continues to assess specific customers and areas within the distribution network.

2.4 Implementation costs

The project costs to date are \$610K, with \$108K of this cost having been recognised in the 2016/17 Regulatory year. This project was extended in 2016/17 to incorporate learnings from our residential battery trial, and is now complete.

2.5 Identifiable benefits

The project has provided insights into the potential scale and timing of distributed energy resources uptake, as well as the opportunity to reduce SA Power Networks' investment in network assets as a result of increased embedded generation and storage. Such opportunities could arise from reduced capacity requirements in greenfield situations or reduction in the size (capacity) of assets installed when asset replacements are undertaken.

3 Residential Energy Storage

3.1 Nature and scope of the project

The deployment of Residential Energy Storage systems is predicted to become increasingly prevalent across electricity networks as battery prices reduce, retail energy prices increase, and customers become more comfortable with the technology. This project has deployed 100 energy storage systems within a selected trial area to study the performance of energy storage systems across the likely applications for this technology as part of efficient distribution network operation and management.

3.2 Aims and expectations

The trial has had three key objectives:

- 1. Verify the applicability of residential battery systems to defer the building of new, or augmentation of existing, network infrastructure:
- 2. Validate assumptions about benefits accruing from batteries with a view to informing the likely timing of larger scale take-up and the levels of subsidy required to facilitate take-up for network purposes; and
- 3. To better understand the impacts of wide-scale battery take-up on load profiles and the performance of the distribution network.

3.3 Implementation of the project

The trial is currently in the research stage with 100% of the systems deployed at customers' premises and data gathering and analysis processes in place.

3.4 Implementation costs

The project costs to date are \$2,268k, with \$793k of this cost having been recognised in the 2016/17 Regulatory year. Further expenditure on this project is expected in subsequent years of this regulatory control period.

3.5 Identifiable benefits

SAPN envisages the following information will be gained from this trial:

- proof of concept: the effectiveness or otherwise of deployment of PV/storage systems at customers' premises in the manner being undertaken by the project to defer distribution network augmentation. This concept may then be included as a viable option(s) in future RIT-D and/or other expenditure assessment processes;
- the potential to pay customers in the future for the use of their batteries, where it is the least cost option, to defer network augmentation;
- understanding the potential demand reductions that are possible from the use of customers' solar and battery installations;
- better understanding of the technical and cost aspects of installation, operation and maintenance of battery/inverter/energy management systems operated on a portfolio basis;
- performance data on systems deployed;
- better load profile data from customers with and without PV/storage systems;
- the net impact on feeder load profiles;
- better understanding of commercial arrangements with equipment vendors and installers (price, service, equipment lead times) and associated risks;
- a clearer understanding of the benefits and attractiveness of residential energy storage to customers with a view to informing the likely timing of larger scale take-up and levels of subsidy required to facilitate take-up for network purposes;
- customer acceptance or otherwise of embracing this technology and the associated arrangements to defer network augmentation; and
- other customer insights.

4. Costs not recoverable

Costs for the DMIA projects described above:

- a. are not recoverable under any other jurisdictional incentive scheme,
- b. are not recoverable under any other State or Commonwealth government scheme, and
- c. are not included in the forecast capital or operating expenditure approved in the AER's distribution determination for the regulatory control period under which the scheme applies, or under any other incentive scheme in that determination.

5. Calculation of DMIA

The total amount of the DMIA spent in the 2015 -2020 Regulatory Control Period is \$3,076k, of which \$1,120k was incurred in the 2016-17 Regulatory year. This amount equates to the total spend against the three projects for which approval is sought under the DMIA as detailed in sections 1 to 3 of this report. The costs associated with these DM trials have been separately captured at the individual project level in SAP, SA Power Networks' integrated business management system and have been reported in Table 7.11.1 of SA Power Networks' Annual Reporting RIN Response 2015-16 and subject to independent external audit in accordance with the RIN requirements.