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1 INTRODUCTION 

1.1 Background 

In recent Draft Decisions, the AER has determined opex allowances related to the growth in network 

outputs by weighting four key outputs: customer numbers, circuit length, ratcheted maximum demand 

and energy throughput.  

The weights applied to these four outputs, for the purposes of setting opex allowances, are derived 

using the results from four econometric models that the AER uses to estimate the relationship 

between opex and cost drivers (i.e., output variables). These models are: 

• A Stochastic Frontier Analysis Cobb-Douglas (SFA CD) model; 

• A Least Squares Cobb-Douglas (LSE CD) model; 

• A Least Squares translog (LSE TL) model; and 

• A Leontief cost function used to determine the output weights used in the AER’s Multilateral Partial 

Factor Productivity (MPFP) model. 

These models have been estimated by the AER’s advisers, Economic Insights (EI). The AER 

averages the estimated output weights derived from these four models and then applies these 

average output weights to all the Distribution Network Service Providers (DNSPs) that it regulates, 

regardless of their individual circumstances. The standard weights that the AER applies to all DNSPs 

may not reflect well how CitiPower’s, Powercor’s and United Energy’s mix of outputs may be expected 

to grow over a particular regulatory control period. 

NERA has recently prepared a report for several DNSPs that argues that the AER should give no 

consideration to the output weight estimates derived using the LSE TL and Leontief models. NERA 

recommends that the AER should rely on the SFA CD and LSE CD models instead.1 The AER’s 

advisers, Economic Insights (EI), have prepared a response that seeks to rebut NERA’s analysis.2 

Against this background, Frontier Economics has been asked to provide an independent opinion on 

the reasonableness of the AER’s approach to estimating output weights. 

1.2 Key findings 

Our main focus in undertaking this review has been on the econometric modelling undertaken by EI 

for the AER, which forms the basis for the calculation of the output weights. In particular, we have 

examined the statistical properties of the estimated Leontief cost functions and the statistical 

reasoning that underpins the AER’s use of the translog functions when calculating output weights. On 

the basis of our review, our key findings are that: 

The AER should discontinue its reliance on the Leontief model in the setting of opex 

allowances 

We agree with NERA that the AER should discontinue its reliance on the Leontief model in the setting 

of opex allowances. We base our conclusion on the fact that there very serious statistical problems 

                                                      

1 NERA, Review of the AER’s proposed output weightings, 18 December 2018. 

2 Economic Insights, Review of NERA report on output weights, 30 April 2019. 
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associated with the Leontief models estimated by EI. Of the 52 Leontief cost functions EI estimated for 

the AER’s 2018 Annual Benchmarking Report, more than half of the estimated cost functions do not 

have a single coefficient that is statistically significant at the commonly used 5% level of significance.3 

Even at the less strict 10% level of significance, 46% of the 52 equations do not have a single 

statistically significant coefficient. Further, for 25 of the 52 equations, the estimated rate of technical 

change is so large as to lack any credibility. 

The situation is exacerbated by the extreme multicollinearity between the customer numbers, circuit 

length and the time trend in the estimating equations. For all 13 DNSPs, the correlation between 

customer numbers and the time trend is 0.96 or higher, and for 11 DNSPs it is 0.99. The correlations 

between circuit length and the time trend, and between circuit length and customer numbers are also 

extremely high for 11 of the 13 DNSPs. 

EI has stated that: 

To minimise the risks associated with the limited degrees of freedom per regression and 

the fixed propositions nature of the Leontief cost function, we then take a weighted 

average of the derived output cost shares across all the Australian DNSP observations, 

where the weights are the DNSPs’ opex shares in total distribution industry opex.4 

However, in our view, the statistical problems with the estimated equations are so severe that they 

cannot be overcome by taking weighted averages. It is hard to overstate how poor the statistical 

properties of the estimated Leontief functions are. In our view, it is not possible to derive credible 

estimates of the relative contributions to opex of different outputs from such poorly estimated models.  

Since the same output weights are used in the construction of the Multilateral Total Factor Productivity 

(MTFP) and MPFP productivity indices, the same conclusion applies to those indices. 

Based on the statistical evidence, energy throughput is not a material driver of opex 

In its rebuttal of NERA review of the AER’s proposed output weightings, EI has stated that the reason 

for including energy is that:  

Economic Insights uses a functional output specification in its economic benchmarking, 

ie outputs reflect the key services provided to and valued by consumers while their 

weights reflect the relative costs of providing those services.5 

However, the AER is using the Leontief cost models to forecast DNSPs’ opex over a regulatory control 

period, not to determine how much customers value different outputs. Hence, the pertinent issue is 

whether energy throughout contributes materially to opex. 

Our review of the statistical properties of Leontief cost functions estimated by EI for the 2018 Annual 

Benchmarking Report finds no statistical evidence that energy throughput has any material impact on 

opex. In only one case did energy make a statistically significant contribution to opex. For all the other 

DNSPs the contribution of energy to opex is statistically highly insignificant. 

                                                      

3 We note that the 2019 Annual Benchmarking Report did not use updated Leontief output weights. Hence, the AER’s latest 
estimates of Leontief output weights are those used in the 2018 Annual Benchmarking Report. 

4 Economic Insights, Review of NERA report on output weights, 30 April 2019, p. 9. 

5 Economic Insights, Review of NERA report on output weights, 30 April 2019, p. 9. 
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Note, however, that the output weights calculated by EI are based on the Leontief equations for all 

inputs, not just opex. In the vast majority of cases, specifically, in 42 out of the 52 estimated Leontief 

equations, the estimated impact of energy on input costs was not only statistically insignificant, but the 

t-values were 0.000. For these 42 cases, the models imply that the probability that energy has zero 

impact on opex is 100%. We cannot think of any statistical reason why energy should be included in 

these equations. 

We also note that in the estimation dataset, energy and opex often moved in opposite directions. In 

50% of cases, either real opex decreased when there was a year-on-year increase in energy, or real 

opex increased when there was a decrease in energy. This is consistent with the lack of statistical 

evidence and casts further doubt on EI’s contention that energy is an important driver of opex. 

The fact that EI has been able to derive a weight for energy of 0.12 from the Leontief analysis should 

not be interpreted as evidence that energy is an important driver of input costs. This result is driven by 

the very few cases where the coefficient for energy is significant. The proportion of significant 

coefficients for energy is no better than if the energy data were replaced by a set of random numbers. 

EI itself has recognised that DNSPs’ costs are unlikely to be influenced significantly by changes in 

energy throughput:6 

The value of the throughput output would be revenue multiplied by its cost share, which 

we would expect to be relatively small given that costs are not likely to be greatly 

influenced by small variations in throughput. [Emphasis added] 

The AER has also previously acknowledged that energy throughput is unlikely to be a material driver 

of DNSPs’ costs:7 

Energy delivered may not be an ideal output variable for DNSPs because it may not 

significantly affect the costs of providing distribution services..……Turvey notes that the 

amount distributed is not decided by the DNSP. In the short-run a load alteration will not 

affect the size of the network and will and only trivially affect operating and maintenance 

costs. 

EI’s and the AER’s acknowledgment that energy throughput is not a material driver of DNSPs’ costs is 

borne out by the statistical evidence presented in our review.  

If the AER wishes to use econometric models to forecast DNSPs’ opex over a regulatory control 

period, those econometric models should include relevant opex drivers, not outputs that have little 

influence over costs. However, the AER has not done that. Instead, the AER has used, for the 

purposes of forecasting opex over a regulatory control period, models containing a variable that both 

EI and the AER have acknowledged has little impact on DNSPs’ costs. The resulting models are mis-

specified and, therefore, unreliable for the purposes to which they have been put by the AER.   

                                                      

6 Economic Insights, Economic Benchmarking of Electricity Network Service Providers, 25 June 2013, p. iv. 

7 AER, Expenditure forecast assessment guidelines for electricity distribution and transmission, Issues Paper, December 2012, 
p. 78. 
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The translog cost function should only be considered for determining output weights if 

translog-derived weights are evaluated at output levels that are relevant to the Australian 

DNSPs 

In EI’s methodology, the output weights derived from the Cobb-Douglas and translog cost functions 

are obtained by normalising the elasticities implied by these functions so that they sum to 1. An 

important feature of the translog cost function that distinguishes it from the Cobb-Douglas cost 

function, is that it allows for elasticities to vary as output levels change rather than imposing constant 

elasticities across all DNSPs. When deriving elasticities from the translog cost function, a decision has 

to be made about the levels of the outputs at which the elasticities should be evaluated.  

The approach adopted by the AER is to evaluate the elasticities at the geometric average output 

levels of all DNSPs in the international sample. However, these average output levels are vastly 

different to the output levels of Australian DNSPs. The output levels chosen by EI for evaluating the 

translog cost function elasticities have no economic or statistical justification. In our view, these 

elasticities should be evaluated at output levels that are reflective of the operating characteristics of 

the Australian DNSPs.  

However, if the AER believes that the elasticities are constant across all utilities in the sample, then it 

would be statistically more efficient to estimate these constant elasticities using the Cobb-Douglas 

cost function. 
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2 MODELS USED BY THE AER TO 
ESTIMATE OUTPUT WEIGHTS 

2.1 Use of output weights in determining opex allowances 

As described in the AER’s Expenditure Forecast Assessment Guideline,8 the allowable opex in each 

year of a regulatory control period is obtained using a ‘base-step-trend’ approach.  

Under this approach, a nominated year from the previous regulatory period is determined to be the 

‘base year’ from which allowable opex for the upcoming regulatory period is rolled forward for each 

DNSP. The formula for obtaining the allowable opex in year 𝑡 can be written as: 

(1) 𝑂𝑝𝑒𝑥𝑡 = [(𝑌𝑏 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡) × ∏ (1 + 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑖)
𝑡
𝑖=1 ] ± 𝑠𝑡𝑒𝑝 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑡 

where: 

• The expression (𝑌𝑏  - efficiency adjustment) represents target opex in the base year, where: 

o it is assumed that the base year is 𝑡 = 0; and 

o 𝑌𝑏  is the proposed opex in the base year. 

• efficiency adjustment is the adjustment that needs to be applied to proposed opex in the base year 

to bring it in line with the target opex in the base year. 

• 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑖 is a combination of the changes in real prices and in output, as well as any 

productivity change in year 𝑖. 

• 𝑠𝑡𝑒𝑝 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑡 represents any step changes that may be applied to allowed opex in year 𝑡 to 

account for efficient expenditures not captured in the target base year opex or the rate of change. 

In this formula, the percentage change in output in year 𝑖 refers to output as a single aggregate 

measure of output.  The output weights are used to derive this aggregate output measure as a 

weighted average of the individual outputs. The impact of output growth on opex, as measured by this 

aggregate output measure, is a key input in determining network opex allowances. 

2.2 AER’s approach to estimating output weights 

In recent Draft Decisions, the AER has determined the output weights used to calculate the aggregate 

output measure by weighting four key outputs: customer numbers, circuit length, ratcheted maximum 

demand and energy throughput. 9, 10  

The weights applied to these four outputs, for the purposes of setting opex allowances, are derived 

from four econometric models that the AER uses to estimate the relationship between opex and cost 

drivers (i.e., output variables). These models are: 

• A Stochastic Frontier Analysis Cobb-Douglas (SFA CD) model; 

• A Least Squares Cobb-Douglas (LSE CD) model; 

                                                      

8 AER Expenditure Forecast Assessment Guideline for Electricity Distribution, AER, November 2013. 

9 For example, SA Power Networks 2020-25 Draft Decision, October 2019, Attachment 6. 

10 Energy throughput is only considered in the Leontief cost function approach to estimating output weights. 



6 

  

Review of econometric models used by the AER to estimate output growth  

frontier economics 

• A Least Squares translog (LSE TL) model; and 

• A Leontief cost function used to determine the output weights used in the AER’s Multilateral Partial 

Factor Productivity (MPFP) model. 

These models have been estimated by the AER’s advisers, Economic Insights (EI). In the most recent 

draft determinations, the AER averages the estimated output weights derived from the above four 

models and then applies these average output weights to all the DNSPs that it regulates, regardless of 

their individual circumstances.  

The econometric models do not provide estimates of the output weights directly. For the CD and LSE 

models, the estimated cost function enables the elasticities of opex with respect to each output to be 

derived. These elasticities typically do not sum to 1, as one would expect for a set of weights. Hence, 

EI normalises the elasticities to ensure that the weights do add to 1. For the Leontief cost function, the 

estimated coefficients in the model are input-output ratios, that is, the amount of input required to 

produce one unit of a given output. These input-output ratios have to be transformed into output 

weights. 

We note that in the AER’s 2019 Benchmarking Report,11 a Stochastic Frontier Analysis translog (SFA 

TL) model is also included in the set of models used in the benchmarking. In the past, whether or not a 

particular TL model was included by the AER/EI when calculating the average output weights 

depended on the dataset used in the estimation of the models. For some datasets the estimated TL 

model produced violations of the so-called monotonicity condition that EI considered to be 

unacceptable. In such cases, the AER excluded the model from consideration when calculating output 

weights. Our conclusions on the AER’s use of the TL cost function in estimating output weights apply 

across all the TL models that EI has estimated at various times. 

 

 

                                                      

11 AER, Annual Benchmarking Report: Electricity Distribution Network Service Providers, November 2019. 
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3 OUTPUT WEIGHTS DERIVED 
FROM LEONTIEF COST FUNCTIONS 

3.1 Overview of approach 

Specification of the Leontief model 

The output weights used by the AER in its MTFP and MPFP analysis are derived econometrically by 

estimating Leontief cost functions. In recent Draft Decisions, the AER has also used these output 

weights in determining base year target opex. 

The Leontief function used by EI includes four outputs:12  

•   energy throughput;  

•   ratcheted maximum demand; 

•   customer numbers; and  

•   circuit length. 

For each DNSP, EI estimates a separate Leontief cost function for each of the four input variables in 

EI’s input index (the denominator of the MTFP and MPFP calculations). The four input variables are: 

• real opex;  

• overhead lines (MVAkms); 

• underground cables (MVAkms); and  

• distribution transformer capacity (MVA) plus the sum of single stage and the second stage of two-

stage zone substation level transformer (MVA). 

Algebraically, the Leontief model estimated by EI for each DNSP and each input can be written as:13 

(1) 𝑥𝑖𝑡 = ∑ (𝑎𝑖𝑗)
2

𝑦𝑗𝑡(1 + 𝑏𝑖𝑡)4
𝑗=1 + 𝑒𝑖𝑡 

where 𝑥𝑖𝑡 ,  𝑖 = 1, … 4 represents the value of the 𝑖th input at time 𝑡, 𝑦𝑗𝑡 , 𝑗 = 1, … 4 represents the value 

of the 𝑗th output at time 𝑡, and 𝑒𝑖𝑡 represents the residual term in the model. The coefficient 𝑎𝑖𝑗 in this 

model has been squared to ensure that an increase in any of the outputs has a non-negative impact 

on inputs. The terms, (𝑎𝑖𝑗)
2

(1 + 𝑏𝑖𝑡), can be interpreted as input-output coefficients, that is, the 

amount of input 𝑖 required at time 𝑡 to produce one unit of output  𝑗. The coefficient 𝑏𝑖 is interpreted by 

EI as the rate of technological change.14 

                                                      

12 Our review of the use of the Leontief models to estimate output weights is based on Economic Insights, Economic 
Benchmarking Results for the Australian Energy Regulator’s 2018 DNSP Benchmarking Report, 9 November 2018, and 
associated files published on the AER’s website. These are the estimates that the AER has relied on in its 2019 Annual 
Benchmarking Report. 

13 We have not included a separate subscript to represent different DNSPs. There is a separate set of four input equations for 
each of the 13 Australian DNSPs included in EI’s benchmarking analysis.  

14 Economic Insights, Economic Benchmarking Results for the Australian Energy Regulator’s 2018 DNSP Benchmarking 
Report, 9 November 2018, p. 109. 
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Estimation of the models 

For each of the 13 DNSPs, each of the four input variables (real opex, overhead lines, underground 

cables, and transformer capacity) is regressed separately against four output variables (energy, 

ratcheted maximum demand, customer numbers, and circuit length) and a time trend as specified in 

equation (1). This means that in total 52 Leontief regression models are estimated (i.e., 13 DNSPs x 4 

inputs).  

The data used by EI to estimate the Leontief regression models for the AER’s 2018 DNSP 

Benchmarking Report covers the 12-year sample period 2006-2017.  

We can see from the specification in equation (1) that there are five parameters that need to be 

estimated in each of the 52 regressions. The data used to estimate these five parameters in each 

equation uses the 12 observations of data available for the particular DNSP being modelled. 

Estimation of cost shares 

Once the 52 Leontief cost functions have been estimated, an output cost share can be estimated for 

each output 𝑗 and for each DNSP and year as described in the following paragraph.  

If 𝑤𝑖𝑡  is the input price for input 𝑖 at time 𝑡, then the input cost of input 𝑖 in producing 𝑦𝑗𝑡 units of output 

𝑗 is 𝑤𝑖𝑡(𝑎𝑖𝑗)
2

𝑦𝑗𝑡(1 + 𝑏𝑖𝑡). This can be estimated for each DNSP, each input and each output by 

substituting the estimated values of the parameters in the Leontief cost function—i.e., by 

𝑤𝑖
𝑡(𝑎𝑖𝑗̂)

2
𝑦𝑗

𝑡(1 + 𝑏𝑖̂𝑡). Summing across the four inputs and normalising then leads to an estimate of the 

share that each output 𝑗 contributes to the total cost of inputs for each DNSP and each time period 𝑡:  

(2) ℎ𝑗𝑡 =
∑ 𝑤𝑖𝑡(𝑎𝑖𝑗̂)

2
𝑦𝑗𝑡(1+𝑏𝑖̂𝑡)4

𝑖=1

∑ [∑ 𝑤𝑖𝑡(𝑎𝑖𝑗̂)
2

𝑦𝑗𝑡(1+𝑏𝑖̂𝑡)4
𝑖=1 ]4

𝑗=1

. 

For each DNSP this produces 4 x T output shares where T represents the number of years of data 

available for analysis, 12 years in the present case. 

Finally, the output cost shares used in the MTFP analysis and to estimate output growth are derived 

by taking a weighted average of the cost shares across all DNSPs and years, where each cost share 

is weighted by the corresponding cost as predicted by the estimated regressions. 

3.2 Assessment of estimated Leontief output weights 

3.2.1 Statistical properties of the parameter estimates 

Very few parameter estimates are statistically significant 

Since the main purpose of the Leontief regressions is to obtain estimates of the relative importance of 

different outputs as drivers of the particular input being modelled, a reasonable expectation would be 

that at least two of the input-output coefficients in any equation be estimated with acceptable 

precision, the usual criterion being that the estimated coefficient be statistically significant at the 5% or 

the 10% level of significance. For the vast majority of the 52 equations this expectation is not met. 

Out of the 52 Leontief equations estimated by EI for the AER’s 2018 Annual Benchmarking report, 27 

equations (52%) have not a single estimated coefficient that is statistically significant at the most 

commonly used level of significance of 5%. If we use the less stringent 10% level of significance, there 

are still 24 equations (46%) that do not have a single statistically significant coefficient.  
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It is difficult to see how one can draw any meaningful inferences from regression models that do not 

have any significant coefficients. Applied econometricians/statisticians would commonly dismiss a 

regression model that has no statistically significant parameter estimates as saying anything useful 

about the relative importance of the different explanatory variables. 

Unexpected values for the time trend 

The coefficient on the time trend variable in the model, 𝑏𝑖, has been interpreted by EI as the rate of 

technological change.15 There is a different rate of technological change for each DNSP and for each 

input. However, the rate of change is kept constant across outputs. 

One would expect the rate of technological change to have values lying in a small range around 0, 

perhaps from -0.10 to +0.10, representing annual rates of technological change of between -10% and 

+10%. This expectation is met by some of the 52 Leontief equations estimated by EI. However, for 25 

of the 52 equations, the values fall well outside this range, with values above 24 and rising as high as 

1,411. If these were interpreted as rates of technological change, this would translate to going from 

2,400% to 141,000%. Clearly, for these 25 equations something else is driving these results, not 

technological change. The estimates of the other parameters in the model would also be affected by 

these unexpectedly large values for the time trend. It is hard to see how any meaning may be attached 

to the other parameter estimates for these equations. 

The results for energy throughput are particularly bad 

Table 1 below lists the t-values (a measure of statistical significance) for the energy throughput output 

variable in each of the 52 Leontief models estimated by EI. A commonly used rule-of-thumb for a 

meaningful t-value is that it should be equal to or greater than 2 in absolute value. Out of the 52 t-

values in Table 1, only four t-values meet that criterion. Indeed, if we use the 10% critical for the 

appropriate t-distribution16 for this case, t7, 0.05 = 1.895, we find that these same four t-values are the 

only t-values in the table that are significant at the 10%. Having four out of 52 parameter estimates 

being significant at the 10% level is no better than what one would expect if energy throughput were 

replaced by a set of random numbers. This indicates that there is no statistical evidence that energy 

throughput has any influence on any of the input variables. 

EI has argues that it:  

uses a functional output specification in its economic benchmarking, ie outputs reflect the 

key services provided to and valued by consumers while their weights reflect the relative 

costs of providing those services.17 

However, the task at hand is not to assess how much customers value different outputs, but rather 

how much each output contributes to opex. And as Table 1 shows, in only one case, for the second 

DNSP, does energy make a statistically significant contribution to opex. For all other DNSPs the 

coefficient on energy is highly insignificant.18 However, the output weights calculated by EI take into 
                                                      

15 Economic Insights, Economic Benchmarking Results for the Australian Energy Regulator’s 2018 DNSP Benchmarking 
Report, 9 November 2018. p. 109. 

16 Since there are 5 parameters in the model and 12 observations used in the estimation, there are 7 degrees of freedom. We 
have selected the 2-tailed 10% critical value, since the estimated coefficients can be both positive and negative. 

17 Economic Insights, Review of NERA report on output weights, 30 April 2019, p. 9. 

18 We have focused on t-values rather than coefficients when discussing the regression results, since, as we argue in section 
3.2.2, the coefficients depend on the choice of the base year for the time trend and they are difficult to interpret.  
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account the estimated Leontief equations for all inputs, not just opex. In the vast majority of cases, the 

estimated impact of energy on input costs is not only statistically insignificant, but the t-values are 

0.000. It is hard to think of a statistical reason why energy should even be included in these equations. 

Table 1: Energy throughput t-values for different input models and DNSPs 

DNSP REAL OPEX 
OVERHEAD 

LINES 

UNDERGROUND 

CABLES 

TRANSFORMER 

CAPACITY 

1 0.000 0.000 0.000 -4.171 

2 4.610 0.000 0.000 0.000 

3 -0.073 0.000 0.000 0.667 

4 0.518 0.000 0.000 0.000 

5 0.000 0.000 0.000 -1.210 

6 0.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 

9 0.000 0.000 0.000 0.000 

10 0.000 3.411 0.000 0.000 

11 0.000 0.000 0.000 0.000 

12 0.058 5.010 0.000 0.000 

13 0.211 0.000 0.000 0.000 

Source:  Frontier Economic analysis of results in the file LCSTFNNLDOT.txt produced by EI for the 2018 Annual Benchmarking 

Report and available on the AER’s website 

3.2.2 Other statistical issues with the estimates 

Lack of convergence 

Since the coefficients of the output variables in EI’s Leontief model are represented by the squared 

terms (𝑎𝑖𝑗)
2
 to ensure that the impact of an increase in an output cannot lead to a decrease 

in any input, the models cannot be estimated by the usual linear regression technique. EI has 

used a method known as non-linear least squares to estimate the models. This is an iterative 

procedure, which terminates once a convergence criterion is reached. In practice there is 

also a limit set on the number of iterations that are carried out before the estimation 

procedure terminates, even if the convergence criterion has not been met. EI set this limit for 

the maximum number of iterations at 5,000. 

For two of the 52 Leontief regressions estimated by EI, the estimation procedure produced an error 

code = 3. This indicates the estimation procedure had not converged after 5,000 iterations. That is, the 

interim estimates after 5,000 iterations did not meet the criteria of the computer package SHAZAM 

(the statistical software used by EI) for a satisfactory conclusion of the estimation procedure. Normally, 
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one would discard an estimated model that has not converge or modify the estimation procedure to 

achieve convergence. However, despite the lack of convergence, EI has ignored the lack of 

convergence and treated these two regression models in the same manner as all the other regression 

model. No special consideration was given to the regression models that did not converge.  

Estimates are dependent on the choice of base year 

The estimates of the input-output ratios (𝑎𝑖𝑗)
2
 depend on the base year selected for the time trend. 

Hence it is possible that for one choice of base year an estimated input-output ratio is constrained to 

be zero, while for another choice of base year it is positive. The implication is that the output weights 

derived from the Leontief cost functions are dependent on the choice of base year for the time trend, 

which is obviously an undesirable aspect of this approach to estimating output weights. 

Base year is not specified consistently across DNSPs 

The time trend variable in EI’s SHAZAM code is created using the command GENR T=TIME(0). 

According to the SHAZAM manual this “creates a time index so that the first observation is equal to 1 

and the rest are consecutively numbered”.19 The effect of this command on the way EI has prepared 

the data for the analysis, is that for the first DNSP in the dataset the time trend will have values from 1 

to 13, for the second DNSP the time trend will have values from 14 to 26, for the third DNSP the time 

trend will have values from 27 to 39 and so on.  

The constraint that the (𝑎𝑖𝑗)
2
 coefficients be non-negative ensures that the input-output coefficient at 

time 𝑡, i.e. (𝑎𝑖𝑗)
2

(1 + 𝑏𝑖𝑡), is positive when 𝑡 = 0. Because of the way EI has defined the trend 

variable, for the first DNSP in the dataset 𝑡 = 0 corresponds to the year 2005. Hence, for the first 

DNSP the constraints ensure that the coefficients are non-negative in 2005. For the second DNSP in 

the dataset 𝑡 = 0 occurs 13 years earlier, in the year 1992. Hence, for the second DNSP the 

constraints ensure that the coefficients are non-negative in 1992. Similarly, for each successive DNSP 

in the dataset, 𝑡 = 0 corresponds to the year that is 13 years earlier than for the previous DNSP, and 

the non-negativity constraints are imposed in that year. We can think of no reason why EI has chosen 

to define the trend variable in this way, but it leads to an inconsistent treatment across the DNSPs of 

the way the non-negativity constraints are imposed. 

Bias 

The non-linear estimation procedure that ensures that the estimated coefficients of the output 

variables in the models cannot be negative leads to biased estimates, if the non-negativity constraints 

that have actually been imposed hold. Since it seems reasonable to assume that the true parameters 

are indeed non-negative, the bias will disappear in large samples. However, in the present case, each 

of the regression models is estimated using only 12 observations of data, which cannot be considered 

a large sample. Hence these biases remain. Without further analysis, it is not possible to say how 

large these biases are, and how many parameter estimates have been affected by these biases. 

                                                      

19 SHAZAM Analytics (2011), SHAZAM Reference Manual: Version 11, p. 82. 
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3.3 Likely reasons for poor estimates 

Small sample size, lack of cross-sectional variation and multicollinearity 

One of the reasons why EI decided to adopt the Leontief cost function approach for estimating output 

weights is that there is insufficient cross-sectional variation in the sample of Australian DNSPs to 

obtain robust estimates using more complex models 20 

Economic Insights (2014, pp.28–29) illustrated how the Australian electricity DNSP data 

at the time exhibited insufficient cross–sectional variation to support robust parameter 

estimation for the sample as a whole, including for more complex, second–order cost 

functions such as the translog. This left two approaches available: either incorporate 

more cross sectional observations or resort to using much simpler cost function methods 

such as the Leontief which can be applied on a DNSP by DNSP basis. 

However, it appears that this problem has not been resolved by estimating the Leontief cost function 

on a DNSP-by-DNSP basis. For each regression there are only 12 observations to estimate five 

parameters. Even if one were only estimating a mean, 12 observations would be generally be 

regarded as quite a small sample. 

For most of the DNSPs, most of the output variables trend up slowly over the 12 years of data. Apart 

from energy throughput, all outputs are highly correlated with the time trend for the vast majority of 

DNSPs.21 This is particularly the case for circuit length and customer numbers, which, for 11 out of the 

13 DNSPs have correlations with the time trend exceeding 0.95, and for 9 out of the 13 DNSPs these 

correlations are equal to 0.98 or higher. The correlations between circuit length and customer 

numbers follow a similar pattern. These are quite extreme cases of multicollinearity, and it is no 

surprise that the models have difficulty in producing precise estimates of the separate impacts of each 

of these output on opex. In the presence of multicollinearity, the individual estimated elasticities used 

to derive the output weights used by the AER cannot be relied upon.22 

Outliers 

While the right-hand variables in most of the Leontief models estimated by EI generally trend upwards 

without large changes from year to year, there is more variation in opex, the left-hand variable. Most of 

the DNSPs have made savings in opex at some point during the estimation period. In some cases the 

opex savings realised have been quite large. There are no variables on the right-hand side of the 

equation that can explain such reductions in opex. In such cases, the estimation procedure is likely to 

rely on accidental co-movements among the explanatory variables to try to achieve as best a fit to the 

data as possible. 

There are, indeed, quite a few cases, where, for a given DNSP, the output variables in a given year 

are higher than they were in previous years (or, in the case of ratcheted maximum demand, no lower), 

yet real opex is lower. For example, for each of the 13 DNSP there are 12 years of data; hence we 

can calculate annual changes in opex and in the output variables for 11 years, making a total of 143 

                                                      

20 Economic Insights, Review of NERA report on output weights, 30 April 2019, p.2. 

21 Our observations are based on the correlations for the logged outputs, since these are the variables used in the regression 
models. 

22 Multicollinearity is less of a problem for the other econometric models because all DNSPs are used together when estimating 
those models. As a result, there is cross-sectional variation in the other models, which overcomes the multicollinearity issue. 
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annual changes for the 13 DNSPs. For 28 of these 143 year-on-year comparisons (20%), there is a 

decrease in real opex, even though there are no decreases in any of the outputs. These are violations 

of monotonicity that are incompatible with economic theory. If we consider changes in real opex and 

outputs across two or more years we find further violations of the monotonicity condition. These 

violations are also incompatible with constraining the coefficients of the output variables to be non-

negative. 

Moreover, there were 43 cases (30%) in the 143 year-on-year comparisons where energy for a 

particular DNSP decreased from one year to the next, yet real opex increased. These observations 

are incompatible with constraining the coefficients on energy in the Leontief functions to be positive. 

Taken together with the cases in the previous paragraph, there are 71 year-on-year comparisons, out 

of 143 such comparisons (50%), where the direction of the annual change in energy (increase or 

decrease) were in the opposite direction to the direction of the change in real opex. This casts further 

doubt on the contention by EI that energy is an important driver of opex. 

3.4 Conclusions about Leontief cost function output weights 

Our analysis of the specification and statistical properties of the estimated Leontief cost functions has 

identified a number of serious issues with these estimated models, including: 

• the lack of any statistically significant parameter estimates for about half the equations;  

• the implausibility of about 50% of the estimated rates of technological change; 

• the high degree of multicollinearity for all but two DNSPs; 

• the lack of any drivers in the model that can explain the sizeable reductions in opex achieved by 

the DNSPs during the estimation period; and  

• the inconsistent specification across the different DNSPs of the base year for the time trend and 

the dependence of the estimated output weights on the base year selected for the time trend. 

Our analysis has not been exhaustive. There may be other issues with the estimated models that 

should be explored. However, the issues we have identified are serious enough to lead us to conclude 

that it is not possible to derive credible estimates of output weights from these models.  

EI has stated that:23 

To minimise the risks associated with the limited degrees of freedom per regression and 

the fixed propositions nature of the Leontief cost function, we then take a weighted 

average of the derived output cost shares across all the Australian DNSP observations, 

where the weights are the DNSPs’ opex shares in total distribution industry opex. 

However, in our view, the statistical problems with the estimated equations are so severe that they 

cannot be overcome by taking weighted averages. It is hard to overstate how poor the statistical 

properties of the estimated Leontief functions are. In our view, it is not possible to derive credible 

estimates of the relative contributions of different outputs to input costs from models with such poor 

statistical properties. 

 

                                                      

23 Economic Insights, Review of NERA report on output weights, 30 April 2019, p. 9. 
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Since the same output weights are used in the construction of the MTFP and MPFP productivity 

indices, the same conclusion applies to these indices. 

Energy as a driver of opex 

With respect to the use of energy throughput as a driver of opex, our review finds no statistical 

evidence that energy throughput has any impact on opex. In only one case did energy make a 

statistically significant contribution to opex. However, the output weights calculated by EI take account 

of the Leontief equations for all inputs, not just opex. In the vast majority of cases, specifically, in 42 

out of the 52 equations, the estimated impact of energy on input costs was not only statistically 

insignificant, but the t-values were 0.000. We cannot think of any statistical reason why energy should 

even be included in these equations. 

We also note that in the estimation dataset energy and opex often moved in opposite directions. In 

50% of cases, either real opex decreased when there was year-on-year increase in energy, or real 

opex increased when there was a decrease in energy. This is consistent with the lack of statistical 

evidence casts further doubt on EI’s contention that energy is an important driver of opex. 

The fact that EI has been able to derive a weight for energy of 0.12 from the Leontief analysis should 

not be interpreted as evidence that energy is an important driver of input costs. This result is driven by 

the very few cases where the coefficient for energy is significant. The proportion of significant 

coefficients for energy is no better than if the energy data were replaced by a set of random numbers. 

As explained above, EI’s main argument for including energy throughput in its econometric models is 

that energy reflects the key services provided to and valued by consumers. However, the AER is using 

the estimated econometric models to forecast DNSPs’ opex over a regulatory control period. These 

models are not being used to determine how much customers value different outputs.  

EI itself has recognised that DNSPs’ costs are unlikely to be influenced significantly by changes in 

energy throughput:24 

The third recommended output is throughput or energy deliveries. While throughput has 

a small direct impact on DNSP costs, it reflects the main output customers are 

charged for and maintains consistency with earlier economic benchmarking studies, 

nearly all of which have included throughput as an output. While the majority of DNSP 

charges remain on throughput it is important to at least recognise throughput as a 

functional output DNSPs supply although it is likely to receive a small weight given its 

likely small impact of DNSP costs. Maintaining some similarity in output coverage to 

earlier studies provides a means of cross checking results. And, throughput data are 

likely to be the most robust for backcasting purposes. The value of the throughput output 

would be revenue multiplied by its cost share, which we would expect to be relatively 

small given that costs are not likely to be greatly influenced by small variations in 

throughput. [Emphasis added] 

The AER has also previously acknowledged that energy throughput is unlikely to be a material driver 

of DNSPs’ costs:25 

                                                      

24 Economic Insights, Economic Benchmarking of Electricity Network Service Providers, 25 June 2013, p. iv. 
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Energy delivered may not be an ideal output variable for DNSPs because it may not 

significantly affect the costs of providing distribution services. Ralph Turvey suggests that 

DNSPs act passively in distributing energy along their lines and cables and through its 

switchgear and transformers. Turvey notes that the amount distributed is not decided by 

the DNSP. In the short-run a load alteration will not affect the size of the network and will 

and only trivially affect operating and maintenance costs. 

EI’s and the AER’s acknowledgment that energy throughput is not a material driver of DNSPs’ costs is 

borne out by the statistical evidence presented above.  

The problem appears to be that these econometric models were developed originally for the purposes 

of conducting economic benchmarking of DNSPs. Economic benchmarking involves estimating 

efficiency by comparing the inputs to production to the outputs from production. To the extent that 

energy throughput is an output delivered by DNSPs, there may be a case for including energy 

throughput in models used for the purpose of conducting benchmarking analysis. 

However, the AER has repurposed those benchmarking models to forecast opex over a regulatory 

control period. The objective of that task is different to the task of estimating the efficiency of DNSPs.26 

If the AER wishes to use econometric models to forecast DNSPs’ opex over a regulatory control 

period, those econometric models should include relevant opex drivers, not outputs that have little 

influence over costs. However, the AER has not done that. Instead, the AER has used, for the 

purposes of forecasting opex over a regulatory control period, models containing a variable that both 

EI and the AER have acknowledged has little impact on DNSPs’ costs. The resulting models are mis-

specified and, therefore, unreliable for the purposes to which they have been put by the AER.   

                                                                                                                                                                      

25 AER, Expenditure forecast assessment guidelines for electricity distribution and transmission, Issues Paper, December 2012, 
p. 78. 

26 EI argues that in 2013 some stakeholders argued that “throughput is what customers see directly and pay for, it should not be 
ignored.” (Economic Insights, Review of NERA report on output weights, 30 April 2019, p. 9) However, those stakeholders 
argued in favour of the inclusion of energy throughput in the context of the development of economic benchmarking models, not 
in the context of the development of econometric models for the purposes of forecasting opex. EI argues that another reason for 
inclusion of energy throughput is “precedent from previous studies.” (Economic Insights, Review of NERA report on output 
weights, 30 April 2019, p. 9). However, this is an irrelevant argument because, as EI itself notes, the previous studies referred to 
are “economic benchmarking studies” (Economic Insights, Economic Benchmarking of Electricity Network Service Providers, 25 
June 2013, p. 9), not studies that develop econometric models for the exclusive purpose of forecasting opex.  
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4 OUTPUT WEIGHTS ESTIMATED 
USING TRANSLOG COST FUNCTION 

4.1 Overview of approach 

Specification of the translog model 

The basic form of the translog opex cost functions estimated by EI has three outputs (customer 

numbers, circuit length and ratcheted maximum demand), the share of circuit length that is 

underground and a time trend. In algebraic terms, the basic functional form of the models can be 

written as:27 

(3) 𝑙𝑛 𝐶𝑖𝑡 = 𝑏0 + ∑ 𝑏𝑚 𝑙𝑛 𝑦𝑚𝑖𝑡
3
𝑚=1  

+0.5 ∑ 𝑏𝑚𝑚 (𝑙𝑛 𝑦𝑚𝑖𝑡)23
𝑚=1  + ∑ ∑ 𝑏𝑚𝑙 𝑙𝑛 𝑦𝑚𝑖𝑡 𝑙𝑛 𝑦𝑙𝑖𝑡

3
𝑙=2

2
𝑚=1,𝑚≠𝑙  

+𝑏𝑈𝐺 𝑙𝑛 𝑠ℎ𝑈𝐺𝑖𝑡 + 𝑏𝑡𝑡 + 𝑏𝑂𝑁𝑇𝑂𝑁𝑇 + 𝑏𝑁𝑍𝑁𝑍 +  𝑒𝑖𝑡 

where 𝑙𝑛 stands for the natural logarithm, the subscript 𝑖 indicates DNSP 𝑖 the subscripts 𝑚 and 𝑙 

represent different outputs, and 𝑡 represents the year. The dependent (left-hand) variable in the model 

is real opex, 𝐶𝑖𝑡, for DNSP 𝑖 at time 𝑡. The explanatory (right-hand) variables, which are assumed to 

‘drive’ opex, are: 

• the outputs, where 𝑦𝑚𝑖𝑡 represents output 𝑚 for DNSP 𝑖 at time 𝑡; 

• 𝑠ℎ𝑈𝐺𝑖𝑡, which is the share of DNSP 𝑖’s circuit length at time t that is underground;  

• T which is the time trend variable. The coefficient of the time trend variable, 𝑏𝑡, represents 

technological change; and  

• 𝑂𝑁𝑇 and 𝑁𝑍 which are dummy variables to capture differences between Australian DNSPs and 

those in Ontario and New Zealand. 

The term 𝑒𝑖𝑡 is the residual term in the model.  

The Cobb-Douglas model is a special case of the translog where the coefficients 𝑏𝑚𝑚  and 𝑏𝑚𝑙 are all 

equal to 0 (i.e., the middle line in equation (3) disappears), resulting in: 

(4) 𝑙𝑛 𝐶𝑖𝑡 = 𝑏0 + ∑ 𝑏𝑚 𝑙𝑛 𝑦𝑚𝑖𝑡
3
𝑚=1 + 𝑏𝑈𝐺 𝑙𝑛(𝑠ℎ𝑈𝐺)𝑖𝑡 + 𝑏𝑡𝑡 + 𝑏𝑂𝑁𝑇𝑂𝑁𝑇 + 𝑏𝑁𝑍𝑁𝑍 +  𝑒𝑖𝑡. 

For the LSE variant of the translog and Cobb-Douglas models, dummy variables are added to the 

above specifications for each of the Australian DNSPs. For the SFA variant of the models, the residual 

term 𝑒𝑖𝑡 is split into an inefficiency component and a noise term. 

Estimation of the models 

EI estimates the various translog models using an international sample of DNSPs that includes 

distribution businesses from New Zealand and Ontario in addition to the 13 Australian DNSPs in the 

National Electricity Market. The models are estimated over two time periods, the long period (2006-

                                                      

27 Our review of the estimation of the models is based on the models presented in Economic Insights, Economic Benchmarking 
Results for the Australian Energy Regulator’s 2019 DNSP Annual Benchmarking Report, 5 September 2019. 
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2018), and the short period (2012-2018). For the long period there are 881 observations in total in the 

estimation sample, of which 169 observations (19%) come from Australian DNSPs. For the short 

period, there are 473 observations in the estimation sample, of which 91 observations (19%) come 

from Australian DNSPs.  

Estimation of cost shares 

EI estimates cost shares for the Cobb-Douglas and translog models by taking the estimates of the 3 

output elasticities implied by the estimated regression model and normalising them so they sum to 1.  

For the Cobb-Douglas models this is an easy task, since, for each output, the elasticity of opex with 

respect to that output is equal to the estimate of the coefficient 𝑏𝑚 in equation (4), which is an output 

of the econometric package used to estimate the model. 

For the translog models the elasticities are not a direct output of the estimation package. The elasticity 

of opex with respect to output 𝑚 is given by:28 

(5) 𝑒𝑙𝑎𝑠𝑡𝑚 =  𝑏𝑚 + ∑ 𝑏𝑚𝑙 𝑙𝑛 𝑦𝑙𝑖𝑡
3
𝑙=1 . 

Hence, the elasticities depend on the levels of all the outputs.  

4.2 Evaluation of translog output weights 

To derive the elasticities when calculating translog output weights, EI evaluates the translog 

elasticities at the geometric mean of that output across all DNSPs and time period used in the 

estimation sample. Table 2 lists these geometric means in the last row for the 2006-2018 sample 

period. The contrast with the corresponding values for Australia is quite stark. Average customer 

numbers for Australian DNSPs are more than six times larger than for the international sample, circuit 

length more than eight times larger, and ratcheted maximum demand is more than five times larger. 

For Australian rural DNSPs the discrepancy in average circuit length is even more extreme, being over 

20 times larger than the average used by EI in its calculations. Since the elasticities depend on the 

levels of the outputs, the elasticities derived by EI do not reflect the operating characteristics of 

Australian DNSPs.29 

Since the main motivation for estimating a translog model rather than a Cobb-Douglas model is to 

obtain flexibility in the estimation of elasticities, it is unclear why the AER/EI do not evaluate the 

translog elasticities at output levels that are more reflective of the Australian DNSPs. If the AER/EI 

really do believe that the elasticities are constant across all utilities in the sample, then it would be 

statistically more efficient to impose these restrictions when estimating the model, which would be the 

same as estimating the Cobb-Douglas cost function. 

There have been suggestions that the elasticities could be evaluated separately for each DNSP, or 

even for each DNSP and year. We recognise that this is not practicable, since there is likely to be too 

much variability in the estimated elasticities when evaluating them at that level of disaggregation. 

However, it would be possible to evaluate the elasticities for the average outputs of a sensible 

grouping of DNSPs, such as the groupings shown in Table 2, for example, the average Australian 

DNSP, or the average Australian urban or rural DNSP.  

                                                      

28 When evaluating this expression, one needs to use the fact that 𝑏𝑚𝑙 = 𝑏𝑙𝑚. 

29 For this statement to be correct, we second order terms in the TL models also need to be significant. Statistical tests of this 
assumption for the four TL models presented in EI’s benchmarking report of 5 September 2019 shows that they are statistically 
significant. 
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Table 2: Geometric averages of output variables for different groupings of DNSPs 

DNSPs IN GROUP 
CUSTOMER 

NUMBERS 
CIRCUIT LENGTH 

RATCHETED MAX 

DEMAND 

Australia - Urban 581,140 14,262 2,218 

Australia - Rural 636,309 75,009 2,282 

Australia - All 605,982 30,684 2,247 

All countries - Urban 93,447 2,056 456 

All countries - Rural 92,072 9,819 311 

Whole international sample 92,937 3,660 396 

Source: Frontier Economic analysis of data used for EI’s report “Economic Benchmarking Results for the Australian Energy 

Regulator’s 2019 DNSP Annual Benchmarking Report, 5 September 2019” 

Note: These are the geometric averages for the 2006-2018 sample 

4.3 Conclusions about translog function output weights 

An important feature of the translog cost function that distinguishes it from the Cobb-Douglas cost 

function, is that it allows for elasticities to vary as output levels change rather than imposing constant 

elasticities across all DNSPs. When deriving elasticities from the translog cost function, a decision has 

to be made about the levels of the outputs at which the elasticities should be evaluated.  

The approach adopted by the AER is to evaluate the elasticities at the geometric average output 

levels of all DNSPs in the international sample. However, these average output levels are vastly 

different to the output levels experienced by Australian DNSPs. The output levels chosen by EI for 

evaluating the translog cost function elasticities have no economic or statistical justification. In our 

view, these elasticities should be evaluated at output levels that are reflective of the operating 

characteristics of the Australian DNSPs. If the AER believes that the elasticities are constant across all 

utilities in the sample, then it would be statistically more efficient to estimate these constant elasticities 

using the Cobb-Douglas cost function. 
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